InvestorsHub Logo
icon url

Denise Chanterelle

04/13/12 12:32 AM

#11430 RE: ih8aloss #11429

It's all good Bill. I hope you're right of course. There's some of us who want to witness some traction with QMC. For instance; an office, a phone, someone picking up that phone when it rings, pr's, communication from management, updated web site, things like that.

These are not unreasonable suggestions. It would make me feel a lot better to see some of this happening, and soon please. Aloha.
icon url

FreeGrass

04/13/12 1:49 AM

#11432 RE: ih8aloss #11429

"Art will take on a whole new dimension never before considered."

Which "Art" are you talking about? ;)

Excellent post again Bill!
The future is bright, the future is TQD, the future is QMC!
icon url

chessmite

04/13/12 8:19 AM

#11436 RE: ih8aloss #11429

Good post. In regards to upward, upconversion is being researched, (2nd link).

Boosting the Efficiency of Quantum Dot Sensitized Solar Cells through Modulation of Interfacial Charge Transfer


The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures.

This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO2 and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2–3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO2) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron–hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport.

The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5–6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye sensitized solar cells (DSSC) and organic photovoltaics.

http://pubs.acs.org/doi/abs/10.1021/ar200315d




Nanomaterials: Making a Bluer Light


ScienceDaily (Apr. 12, 2012) — A new design for nanoparticles that absorb low-energy light and emit high-energy light may find use in biological imaging.



The light that a luminescent particle emits is usually less energetic than the light that it absorbs. Some applications require the emitted light to be more energetic, but this so-called upconversion process has been observed in only a small handful of materials. Xiaogang Liu at the A*STAR Institute of Materials Research and Engineering and co-workers have now succeeded in expanding the list of upconversion materials, easing the path to new applications.

Traditional upconversion particles are distinguished by their evenly-spaced or 'ladder-like' energy levels which their internal electrons can take on. The even spacings allow an electron to be promoted up in energy many times consecutively, by absorbing many photons of the same color. When an electron that has been promoted to a high energy finally relaxes back to the lowest-energy state, it emits a photon which is more energetic than the photons that excited it to begin with.

Nanoparticles doped with elements from the lanthanide group of the periodic table are capable of upconversion, and are useful for biological imaging because their high-energy emission can be clearly distinguished from background noise. However, only three elements from the lanthanide series are efficient at upconversion: erbium, thulium, and holmium. This list is so short because of the simultaneous requirements that an upconversion particle exhibit a ladder-like electronic energy structure, and also efficient emission.

Liu and colleagues solved this problem by using different lanthanides to perform different stages of the upconversion process. Sensitizer elements absorb incident light, and transfer the absorbed energy to nearby accumulators, whose electrons rise to high energy levels. Then, the energy stored in accumulators transfers by hopping through many migrators, until an activator is reached. Finally, the activator releases a high-energy photon.

By assigning different elements to each of these four functions, the researchers were able to ease the requirements on any individual element. In addition, unwanted interactions among different elements were avoided by separating them spatially inside a single spherical nanoparticle that has sensitizers and accumulators in the core, activators in the shell and migrators in both the core and the shell.

This design allowed Liu and his team to observe a spectrum of colors from the upconverted emission of europium, terbium, dysprosium and samarium (see image). The same approach may also allow other elements to emit efficiently. "Our results may lead to advances in ultrasensitive biodetection," says Liu, "and should inspire more researchers to work in this field."

http://www.sciencedaily.com/releases/2012/04/120412105102.htm

........upconversion seems to be a new and interesting twist





Oxide Films for Displays and Solar Cells


ScienceDaily (Apr. 12, 2012) — A low-temperature method could be used to 'grow' transparent zinc oxide films for use in displays and solar cells.


The displays on flat-screen TVs and smartphones, as well as the panels on solar cells, all require materials that not only conduct electricity but are also highly transparent to visible light. One transparent electrical conductor that is typically used in the industry is indium tin oxide (ITO). Unfortunately, ITO is not only expensive but also toxic to the environment.

In a significant step forward in the field, researchers from the A*STAR Institute of Materials Research and Engineering and the A*STAR Data Storage Institute have now pioneered a low-cost methodology for the fabrication of zinc oxide thin films. "These zinc oxide thin films are highly regarded as a promising material for replacing ITO," says Nancy Wong, a principal investigator in the research team.

Zinc oxide is a cheap and abundant material that is widely used in cosmetics such as sunscreens or baby powders. Its transparency to visible light is similar to that of ITO, but the fabrication of zinc oxide thin films on an industrial scale is considerably more challenging. In particular, to achieve the necessary electrical conductivity, small amounts of gallium need to be incorporated during growth of the films. Gallium has an additional outer electron in comparison to zinc, which is essential to achieve the necessary electrical conductivity. To date, such gallium-doped zinc oxide (GZO) films have only been realized by high-temperature processing methods.

The method developed by the A*STAR researchers involves the use of pulsed laser deposition. In this room-temperature process, an intense laser beam is used to evaporate zinc and gallium atoms. The atoms move towards a substrate that is also placed within the stainless steel chamber. They then react with oxygen gas also supplied to the growth chamber to form a zinc oxide film on the substrate. Ideal growth compositions were then found by a systematic variation of parameters such as oxygen gas pressure and substrate temperature. The best films grown achieve an optical transparency as well as electrical conductivity that match that of ITO.

Given such advantages, these GZO films could have significant commercial potential. The films may be particularly well-suited for solar panel development, as cost-reduction is a crucial factor for the solar panel industry. "The deposition can be carried out at room temperatures, which reduces the tendency to damage layers underneath, for example, in the plastic substrates applied in organic solar cells and other flexible electronic devices," says Wang. "Entirely new applications beyond ITO could emerge this way."

http://www.sciencedaily.com/releases/2012/04/120412105100.htm

......the articles to the right, (on site and the history thereof) kinda gives one an idea about the time concept involved and the wave of innovations coming. It seems before some new tech is established, the following generation of advancements are already on its' heels. Some will collaspe, while other technology will overtake and become new leaders of tomorrow.