InvestorsHub Logo
Followers 831
Posts 120079
Boards Moderated 17
Alias Born 09/05/2002

Re: None

Thursday, 08/02/2007 6:54:40 AM

Thursday, August 02, 2007 6:54:40 AM

Post# of 12660
U-M Researchers Find Family of 'On Switches' That Cause Prostate Cancer

http://www.eurekalert.org/pub_releases/2007-08/uomh-urf073007.php

>>
Gene fusions trigger cancer growth, could impact treatment choices

ANN ARBOR, Mich. Aug 1 — Researchers at the University of Michigan Comprehensive Cancer Center have discovered how genes turn on the switch that leads to prostate cancer.

The team discovered that pieces of two chromosomes can trade places with each other and cause two genes to fuse together. The fused genes then override the “off” switch that keeps cells from growing uncontrollably, causing prostate cancer to develop.

By testing these gene fusions in mice and in cell cultures, the researchers showed that the fusions are what cause prostate cancer to develop. But it’s not just one set of genes that fuse. The researchers found that any one of several in a family of genes can become scrambled and fuse. Results of the study appear in the Aug. 2 issue of Nature.

“Each of these switches, or gene fusions, represent different molecular subtypes. This tells us there’s not just one type of prostate cancer. It’s a more complex disease and potentially needs to be treated differently in each patient,” says lead study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology, a new U-M center whose goal is to translate research into real world practice.

The gene fusion research is the centerpiece project of the new center. In the current study, researchers found one of several abnormal gene fusions in the prostate cancer tissue samples they tested. In 2005, the researchers identified a prostate-specific gene called TMPRSS2, which fuses with either ERG or ETV1, two genes known to be involved in several types of cancer.

The Nature paper reports on five additional genes that fuse with ERG or ETV1 to cause prostate cancer. Gene fusions were involved in 60 percent to 70 percent of the prostate cancer cell lines the researchers looked at. The genes involved are all controlled by a different mechanism. For example, four of the genes are regulated by androgen, a male sex hormone known to fuel prostate cancer. Androgen deprivation is a common therapy for prostate cancer.

Knowing which gene fusion is involved in an individual patient’s tumor could impact treatment options. If an androgen-regulated gene is involved, androgen therapy would be appropriate. But if the gene fusion involves a gene that represses androgen, the anti-androgen therapy could encourage the cancer’s growth. This may also explain why androgen treatment is not effective for some prostate cancers.

“Typing someone’s prostate cancer by gene fusion can affect the treatment given. We would not want to give androgen to someone whose prostate cancer gene fusion is not regulated by androgen,” says Chinnaiyan, who is the S.P. Hicks Collegiate Professor of Pathology at the U-M Medical School.

Rearrangements in chromosomes and fused genes are known to play a role in blood cell cancers like leukemia and lymphoma, and in Ewing's sarcoma. A fused gene combination that plays a role in chronic myelogenous leukemia led researchers to develop the drug Gleevec, which has dramatically improved survival rates for that disease.

Chinnaiyan believes the prostate gene fusions will eventually lead to similar treatments for prostate cancer.

“More immediately, we hope to develop tests for diagnosis or prognosis. But long-term, we hope this will lead to better therapies to treat prostate cancer. The key challenge is to find a drug that would go after this gene fusion,” Chinnaiyan says.

The gene fusion technology has been licensed to San Diego-based Gen-Probe Inc., which is working on a screening tool to detect gene fusions in urine. The tool could one day supplement or replace the prostate specific antigen, or PSA, test currently used to screen for prostate cancer.
<<

“The efficient-market hypothesis may be
the foremost piece of B.S. ever promulgated
in any area of human knowledge!”

Join InvestorsHub

Join the InvestorsHub Community

Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.