InvestorsHub Logo
Followers 128
Posts 3809
Boards Moderated 0
Alias Born 07/12/2003

Re: None

Monday, 04/19/2021 1:22:53 PM

Monday, April 19, 2021 1:22:53 PM

Post# of 200344
What is a Monoclonal Antibody?
Monoclonal antibodies (mAbs) are antigen-recognizing glycoproteins that are made by identical immune cells, all of which are clones of a unique parent cell. Since 2014, FDA has approved at least five monoclonal antibodies per year, and this trend shows no signs of slowing. These therapies encompass a number of indications such as autoimmune disorders, infectious diseases, and oncology, among others.

Due to their exquisite specificity, monoclonal antibodies embody the promise of precision medicine, which is to develop therapies that are specifically tailored to a particular target. The advantage of such a strategy is clear: for example, instead of treating a patient with conventional chemotherapy, which is toxic not only to tumor cells but to normal cells as well, a monoclonal antibody therapy can selectively target the cancer via recognition of specific surface antigens that are over-expressed on tumor cells and not expressed (or at least to the same degree) on normal cells.

Despite their promise, monoclonal antibodies have not had a smooth road to approval. Over the years, even seemingly well-designed monoclonal antibodies have often resulted in unacceptable adverse reactions, more times than not sending researchers back to the drawing board to devise new ways to make the technology viable. The big breakthrough that pushed monoclonal antibodies from a good idea to a clinically useful tool came about with the advent of antibody humanization. To understand antibody humanization, it is helpful to review a brief history of monoclonal antibodies.

The Origin of Monoclonal Antibodies
In 1986, Orthoclone OKT3® (muromonab-CD3) became the first monoclonal antibody approved by the FDA. Its production was based on the Nobel-winning work of Kohler and Milstein on murine hybridoma technology. This technology, part of which is still used in the generation of some modern monoclonal antibodies, had several steps. The first step involved generating a specific immune response in mice by injecting them with a particular antigen. In the case of muromonab, the antigen was the T-cell co-receptor CD3. This resulted in the mouse’s immune system producing antibodies against CD3. Antibody-producing cells, however, are typically short-lived, and thus not great candidates for the mass production of a therapeutic antibody. To get around this limitation, the second step of the process involved isolating the antibody-producing mouse cells and fusing them with immortalized myeloma tumor cells. This step resulted in the creation of hybrid cells that could produce antibodies but also had the replicative properties of tumor cells.

The problem with using monoclonal antibodies secreted directly from these hybrid cells, however, became apparent almost immediately. The human immune system is trained to attack anything it sees as foreign. Since muromonab was a mouse protein and thus foreign to the human immune system, patients treated with the drug generated anti-mouse antibodies, limiting the effectiveness of the drug and creating serious side effects. The story of monoclonal antibody therapeutics might have ended with muromonab had it not been for advances in genetic engineering made in the late 1980s and early 1990s.

Humanized Monoclonal Antibodies Today
The newest generation of therapeutic antibodies includes what are referred to as fully human monoclonal antibodies. Fully human monoclonal antibodies are produced by one of two very different routes. The first route, used to make Vectibix® (panitumumab, approved in 2006), is very similar to the murine hybridoma process. The major difference is that the mice used to produce fully human monoclonal antibodies have been genetically altered to carry human antibody genes rather than mouse antibody genes. Thus, no part of the eventual therapeutic monoclonal antibody is mouse-derived. The second route, used to make Humira® (adalimumab, approved in 2002), uses a technology called phage display to identify optimal CDRs. Phage display involves inserting a genetic library of CDRs into a type of virus that infects bacteria (bacteriophages). The phages then express the CDRs, allowing for easy screening of the CDRs exhibiting the strongest antigen binding. Once the best CDRs are identified, they are then grafted onto a human antibody scaffold. Fully human monoclonal antibodies generally show a lower incidence of ADAs than their humanized counterparts, but immune responses to fully human monoclonal antibodies still persist and vary widely by product and indication.

Conclusions

Regardless of the exact path that gives rise to the next generation of monoclonal antibody therapies, one thing is for certain: therapeutic antibodies can do things that few small molecules can, and as such will remain firmly a part of the drug development landscape for years to come.
https://www.nuventra.com/resources/blog/monoclonal-antibodies-past-present-and-future/