InvestorsHub Logo
Followers 58
Posts 10086
Boards Moderated 1
Alias Born 09/21/2016

Re: None

Thursday, 06/22/2017 1:09:48 PM

Thursday, June 22, 2017 1:09:48 PM

Post# of 459819
Stop me if you have heard this before...medicalexpress.com 8hrs ago


An InSysBio scientific group led by Tatiana Karelina has developed a quantitative system pharmacology model of Alzheimer's disease. The first part has been published in CPT Pharmacometrics & Systems Pharmacology, and shows how to design initial phases of clinical trials of new drugs and to interpret the data.

Alzheimer's is a chronic neurodegenerative disease that leads to senile cognitive impairment and memory loss affecting one out of three people over 70. Such changes are caused by functional disorders and the subsequent death of neurons. However, the causes of brain cell death remain unknown, and there is no effective therapy for Alzheimer's disease.
At the moment, the most common hypothesis is a theory of the toxic effect of the beta-amyloid protein, which accumulates in the brain with age, aggregating into insoluble amyloid plaques. The presence of these plaques in the brain is the main marker of Alzheimer's disease (unfortunately, often found postmortem). Soluble forms of the protein that do not aggregate into plaques are also considered to be toxic.
All modern Alzheimer's therapies act in one of the three ways: They can block production of soluble beta-amyloid, they destroy the protein before transformation into the insoluble form, or they stimulate plaque degradation. "Clinical trials for Alzheimer's therapies have got one significant feature—their short duration. They last for no more than five years, whereas the disease can progress for decades. And early Phase I-II tests last for only few weeks. With such experiment designs, research can affect only the processes of distribution and degradation of the soluble beta-amyloid forms. Therefore, we developed this part of our model to analyze and predict the dynamics of the new generation of drugs, for instance, the inhibitors of amyloid production," says Tatiana Karelina, the head of the neurodegenerative disease modeling group InSysBio LLC.
The first difficulty encountered by drug developers is the interpretation of the results obtained in animal tests. In general, most studies of the distribution of amyloid are carried out on mice. Scientists inject a labeled protein into the mouse brain and observe the distribution of the radioactive label. Alternatively, researchers study the dynamics of amyloid in the presence of drugs. Based on the data obtained, researchers can calculate the therapeutic window for the medication—a range of doses from the minimum effective to the maximum nontoxic dose. Then doses for humans or monkeys are calculated by using mass or volume scaling.


Read more at: https://medicalxpress.com/news/2017-06-pharmacology-drug-discovery-alzheimer.html#jCp
Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent AVXL News