InvestorsHub Logo

kiy

Followers 53
Posts 16175
Boards Moderated 3
Alias Born 08/19/2010

kiy

Re: circlem post# 9915

Tuesday, 12/17/2013 1:06:24 PM

Tuesday, December 17, 2013 1:06:24 PM

Post# of 19859
Thorium becomes Uranium...storage of spent rods is the issue...but it can be stored...and I've see where there is a way to make the 1/2 life thing a non issue and it is with the use of lasers like the hint I hi-lited below...
Anyway I put links to these post on the Intro page in the Uranium section...thanks
http://fairewinds.org/demystifying/thorium-reactors


http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Uranium-Resources/Uranium-and-Depleted-Uranium/
The nucleus of the U-235 isotope comprises 92 protons and 143 neutrons (92 + 143 = 235). When the nucleus of a U-235 atom is split in two by a neutrond, some energy is released in the form of heat, and two or three additional neutrons are thrown off. If enough of these expelled neutrons split the nuclei of other U-235 atoms, releasing further neutrons, a chain reaction can be achieved. When this happens over and over again, many millions of times, a very large amount of heat is produced from a relatively small amount of uranium.
It is this process, in effect 'burning' uranium, which occurs in a nuclear reactor. In a nuclear reactor the uranium fuel is assembled in such a way that a controlled fission chain reaction can be achieved. The heat created by splitting the U-235 atoms is then used to make steam which spins a turbine to drive a generator, producing electricity.
Whereas the U-235 atom is 'fissile', the U-238 atom is said to be 'fertile'. This means that it can capture a neutron and become (indirectly) plutonium-239, which is fissile. Pu-239 is very much like U-235, in that it can fission following neutron capture, also yielding a lot of energye. Because there is so much U-238 in a reactor core (most of the fuel), these reactions occur frequently, and in fact about one-third of the energy yield typically comes from burning Pu-239.
Both uranium and plutonium were used to make bombs before they became important for making electricity and radioisotopes. But the type of uranium and plutonium for bombs is different from that in a nuclear power plant. Bomb-grade uranium is highly enriched (>90% U-235, instead of about 3.5-5.0% in a power plant); bomb-grade plutonium is fairly pure (>90%) Pu-239 and is made in special reactors.


A by-product (sometimes considered a waste product) of enrichment is depleted uranium (about 86% of the original feed).
After enrichment, the UF6 gas is converted to uranium dioxide (UO2) which is formed into fuel pellets. These fuel pellets are placed inside thin metal tubes which are assembled in bundles to become the fuel elements for the core of the reactor. UO2 has a very high melting point – 2865°C (compared with uranium metal – 1132°C).
Used reactor fuel is removed from the reactor and stored, either to be reprocessed or disposed of underground.
The uranium orebody contains both U-235 and (mostly) U-238. About 95% of the radioactivity in the ore is from the U-238 decay series. This has 14 radioactive isotopes in secular equilibrium, thus each represents 7% of the total. (In the case of Ranger ore - with 0.3% U308 - it has about 450 kBq/kg, so irrespective of the mass proportion, 32 kBq/kg per nuclide in that decay series.) When the ore is processed, the U-238 and the very much smaller masses of U-234 (and the U-235) are removed. The balance becomes tailings, and at this point has about 86% of its original intrinsic radioactivity. However, with the removal of most U-238, the following two short-lived decay products (Th-234 & Pa-234) soon disappear, leaving the tailings with a little over 70% of the radio-activity of the original ore after several months. The controlling long-lived isotope then becomes Th-230 which decays with a half life of 77,000 years to radium-226 followed by radon-222.
Recycled (reprocessed) uranium
Uranium comprises about 96% of used fuel. When used fuel is reprocessed, both plutonium and uranium are recovered separately.
Uranium recovered from reprocessing used nuclear fuel is mostly U-238 with about 1% U-235, so it needs to be converted and re-enriched. This is complicated by the presence of impuritiesi and two isotopes in particular, U-232 and U-236, which are formed by or following neutron capture in the reactor, and increase with higher burn-up levelsj. U-232 is largely a decay product of Pu-236, and increases with storage time in used fuel, peaking at about ten years. Both U-232 and U-236 decay much more rapidly than U-235 and U-238, and one of the daughter products of U-232 emits very strong gamma radiation, which means that shielding is necessary in any plant handling material with more than very small traces of it. U-236, comprising about 0.5% of recovered uranium, is a neutron absorber which impedes the chain reaction, and means that a higher level of U-235 enrichment is required in the product to compensate.
Because they are lighter than U-238, both U-232 and U-236 tend to concentrate in the enriched (rather than depleted) output, so reprocessed uranium (RepU) that is re-enriched for fuel must be segregated from enriched fresh uranium. Enriched RepU has an activity of over 250 kBq/g, which compares with 82kBq/g (most of this being from U-234) for enriched fresh uranium. The presence of U-236 in particular means that most reprocessed uranium can normally be recycled only once. In the future, laser enrichment techniques may be able to remove these difficult isotopes.

Uranium from thorium
Thorium, as well as uranium, can be used as a nuclear fuel. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (U-233)k, which is fissile (and long-lived). The irradiated fuel can then be unloaded from the reactor, the U-233 separated from the thorium, and fed back into another reactor as part of a closed fuel cycle.
U-233 has higher neutron yield per neutron absorbed than U-235 or Pu-239. Given a start with some other fissile material (U-233, U-235 or Pu-239) as a driver, a breeding cycle similar to but more efficient than that with U-238 and plutonium (in conventional thermal neutron reactors) can be set up. The driver fuels provide all the neutrons initially, but are progressively supplemented by U-233 as it forms from the thorium. However, the intermediate product protactinium-233 (Pa-233) is a neutron absorber which diminishes U-233 yield. (See information page on Thorium).

Depleted uranium
Every tonne of natural uranium produced and enriched for use in a nuclear reactor gives about 130 kg of enriched fuel (3.5% or more U-235). The balance is depleted uranium tails (U-238, typically with 0.25-0.30% U-235). This major portion has been depleted in its fissile U-235 isotope (and, incidentally, U-234) by the enrichment process. It is commonly known as DU if the focus is on the actual material, or tails if the focus is on its place in the fuel cycle and its U-235 assay.
DU tails are either stored as UF6 or (especially in France) de-converted back to U3O8, which is more benign chemically and thus more suited for long-term storage. It is also less chemically toxic. Every year over 50,000 tonnes of depleted uranium joins already substantial stockpiles in the USA, Europe and Russia. World stock is about 1.5 million tonnes.
Some DU is drawn from these stockpiles to dilute high-enriched (>90%) uranium released from weapons programs, particularly in Russia, and destined for use in civil reactors (see information page on Military Warheads as a Source of Nuclear Fuel). This weapons-grade material is diluted about 25:1 with depleted uranium, or 29:1 with depleted uranium that has been enriched slightly (to 1.5% U-235) to minimise levels of (natural) U-234 in the product.
Some, assaying 0.25-0.40% U-235, is sent to Russia for re-enrichment, using surplus plant capacity there to produce either natural uranium equivalent or low-enriched uranium (4-5% U-235).
Some DU is used for mixed oxide (MOX) fuel, by mixing with plutonium (see information page on Mixed Oxide (MOX) Fuel).
Other uses depend on the metal's very high density (1.7 times that of lead). Hence, where maximum mass must fit in minimum space, such as aircraft control surface and helicopter counterweights, yacht keels, etc, it is often well suited. Until the mid 1970s it was used in dental porcelains. In addition it is used for radiation shielding, being some five times more effective than lead in this role.
Also because of its density, it is used as solid slugs or penetrators in armour-piercing projectiles, alloyed with abut 0.75% titanium. DU is pyrophoric, so that upon impact about 30% of the projectile atomises and burns to uranium oxide dust. It was widely used in the 1990/91 Gulf War (300 tonnes) and less so in the 1998/99 Kosovo War (11 tonnes).
Health aspects of DU
Depleted uranium is not classified as a dangerous substance radiologically, though it is a potential hazard in large quantities, beyond what could conceivably be breathed. Its emissions are very low, since the half-life of U-238 is the same as the age of the Earth (4.5 billion years). There are no reputable reports of cancer or other negative health effects from radiation exposure to ingested or inhaled natural or depleted uranium, despite much study.
However, uranium does have a chemical toxicity about the same as that of lead, so inhaled fume or ingested oxide is considered a health hazard. Most uranium actually absorbed into the body is excreted within days, the balance being laid down in bone and kidneys. Its biological effect is principally kidney damage. The World Health Organization (WHO) has set a tolerable daily intake level for uranium of 0.6 microgram/kg body weight, orally. (This is about eight times our normal background intake from natural sources.) Standards for drinking water and concentrations in air are set accordingly.
Like most radionuclides, it is not known as a carcinogen, or to cause birth defects (from effects in utero) or to cause genetic mutations. Radiation from DU munitions depends on how long since the uranium has been separated from the lighter isotopes so that its decay products start to build up. Decay of U-238 gives rise to Th-234, Pa-234 (beta emitters) and U-234 (an alpha emitter)m. On this basis, in a few months, DU is weakly radioactive with an activity of around 40 kBq/g quoted. (If it is fresh from the enrichment plant and hence fairly pure, the activity is 15 kBq/g, compared with 25 kBq/g for pure natural uranium. Fresh DU from enriching reprocessed uranium has U-236 in it and more U-234 so is about 23 kBq/g.)
In 2001, the UN Environment Programme (UNEP) examined the effects of nine tonnes of DU munitions having been used in Kosovo, checking the sites targeted by it5. UNEP found no widespread contamination, no sign of contamination in water of the food chain and no correlation with reported ill-health in NATO peacekeepers. A two-year study6 by Sandia National Laboratories in USA reported in 2005 that consistent with earlier studiesn, reports of serious health risks from DU exposure during the 1991 Gulf War are not supported by medical statistics or by analysis.
An editorial in the Radiological Protection Bulletin of the UK's National Radiation Protection Board stated: "DU is radioactive and doses from inhalation of dust or from handling bare spent rounds need to be assessed properly. However, the scientific consensus at present is that the risks are likely to be small and easily avoidable, especially compared with the other risks the armed forces have to take in war."8
Thus DU is clearly dangerous for military targets, but for anyone else – even in a war zone – there is little hazard. Ingestion or inhalation of uranium oxide dust resulting from the impact of DU munitions on their targets is the main possible exposure route.

storage of spent rods is still an issue same as with uranium

“A man cannot directly choose his circumstances, but he can
choose his thoughts, and so indirectly, yet surely, shape his
circumstances. James Allen, As a Man Thinketh

Join the InvestorsHub Community

Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.