InvestorsHub Logo

zerosnoop

10/08/16 7:06 PM

#33394 RE: mr_sano #33393

INCORRECT. The sec has VERIFIED & APPROVED the INDEPENDENT reports provided by ATS RheoSystems, RMOTC & PETROCHINA. The INDEPEDENT results are published in the 10k about the PROVEN AOT. This is why the DRA & DILUENT companies & their AGENTS, LAWYERS & PARASITES are very concerned about the PROVEN AOT & the damage it will do to their industry & profits. The DRA & DILUENT companies have FAILED to stop the progress of the PROVEN AOT.

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.012304

Laboratory and Scientific Testing

From 2010 through 2013, the Company worked with the U.S. Department of Energy (“US DOE”) to test its technology at the Department of Energy’s Rocky Mountain Oilfield Testing Center (“RMOTC”), near Casper, Wyoming. This third-party testing independently verified the efficacy of the Company’s technology operating in a controlled facility, using commercial-scale prototype of our AOT equipment. These tests were summarized in the US DOE Rocky Mountain Oilfield Test Center report dated April 4, 2012 (“ROMRC Report”), which reported AOT measured pressure loss reduction of 40% (RMOTC Report, Fig. 1, page 4) and viscosity reduction of 40% (RMOTC Report, Fig. 2, page 4); and reported observed reductions in line-loss and gains in pump operation efficiency across the entire length of the 4.4-mile test pipeline. A copy of the RMOTC April 4, 2012 Report is available on the Company website at: https://qsenergy.box.com/DOE-STWA-RMOTC-Report. A subsequent long-duration (24-hour) test at the RMOTC facility tested the effectiveness of AOT in treating oil overnight, as pipeline oil temperatures and viscosities drop. In its report dated May 3, 2012 to May 4, 2012, US DOE engineers recorded 56% reduction in viscosity of the AOT-treated oil versus untreated oil, with AOT effectively stabilizing oil viscosity throughout the overnight run despite dropping temperatures. A copy of the RMOTC May 3, 2012 to May 4, 2012 report is available on the Company website at: https://qsenergy.box.com/DOE-STWA-RMOTC-Overnight.

Laboratory testing of our AOT technology has been conducted by Dr. Rongjia Tao. Testing of the technology as applied to crude oil extraction and transmission has been conducted at Temple University in their Physics Department, in addition to the US DOE, at their Rocky Mountain Oilfield Testing Center, located on the Naval Petroleum Reserve #3 Teapot Dome Oilfield, north of Casper, Wyoming. In addition, a group led by Dr. Rongjia Tao, Chairman, Department of Physics of Temple University conducted experiments, using the laboratory-scale Applied Oil Technology apparatus at the National Institute of Standards and Technology (NIST) Center for Neutron Research (CNR). NIST is an agency of the U.S. Department of Commerce, founded in 1901 in Gaithersburg, Maryland.

Independent laboratory testing was also conducted as a collaborative effort by Temple University and PetroChina Pipeline R&D Center (“PetroChina”) in 2012. In its report dated June 26, 2012 (“PetroChina Report”), PetroChina concluded, “The above series of tests show that it is very effective to use AOT to reduce the viscosity of crude oil. We can see that AOT has significantly reduced the viscosity of Daqing crude oil, Changqing crude oil, and Venezuela crude oil, and greatly improved its flow rate.” (PetroChina Report, page 15). A copy of the PetroChina Report is available online at: https://qsenergy.box.com/PetroChina-STWA-Report

As previously reported in 2014, QS Energy installed and tested its commercial AOT equipment, leased and operated by TransCanada on TransCanada’s high-volume Keystone pipeline operation. The first full test of the AOT equipment on the Keystone pipeline was performed in July 2014, with preliminary data analyzed and reported by Dr. Rongjia Tao of Temple University. Upon review of the July 2014 test results and preliminary report by Dr. Tao, QS Energy and TransCanada mutually agreed that this initial test was flawed due to, among other factors, the short term nature of the test, the inability to isolate certain independent pipeline operating factors such as fluctuations in upstream pump station pressures, and limitations of the AOT device to produce a sufficient electric field to optimize viscosity reduction. Although Dr. Tao’s preliminary report indicated promising results, QS Energy and TransCanada mutually agreed that no conclusions could be reliably reached from the July 2014 test or from Dr. Tao’s preliminary report. As a result of this test, the Company modified its testing protocols and contracted with an independent laboratory, ATS RheoSystems, a division of CANNON (“ATS”), to perform follow-up tests at the TransCanada facility. This independent laboratory performed viscosity measurements at the TransCanada facility during subsequent testing in September 2014. As detailed in its field test report dated October 6, 2014, ATS measured AOT viscosity reductions of 8% to 23% depending on flow rates and crude oil types in transit. Over the duration of a 24-hour test intended to measure the recovery of the AOT treated oil from its reduced-viscosity treated state to its original pre-treated viscosity, ATS measured viscosity reductions of 23% three hours after treatment and 11% thirteen hours after treatment, with the crude oil returning to its untreated state approximately twenty-two hours after treatment. In its summary report dated February 5, 2015, ATS concluded that i) data indicated a decrease in viscosity of crude oil flowing through the TransCanada pipeline due to AOT treatment of the crude oil; and ii) the power supply installed on our equipment would need to be increased to maximize reduction in viscosity and take full advantage of the AOT technology. A copy of the ATS summary report dated February 5, 2015 is available on the Company website at: https://qsenergy.box.com/ATS-AOT-SummaryRpt. A copy of the ATS field test report dated October 6, 2014, with certain confidential information redacted, is available on the Company website at: https://qsenergy.box.com/ATS-AOT-Detailed-Report.

Although, as reported by ATS, the efficacy of the AOT technology operated in the TransCanada field test was constrained due to limitations of the electric field applied by that unit’s power supply, subsequent analysis by QS Energy personnel of ATS test results compared against laboratory tests performed at Temple University on oil samples provided by TransCanada revealed a single test run in which the electric field generated by the AOT was sufficient to fully treat the oil given operating conditions at the time of the test. In this test run, ATS measured a 23% reduction in viscosity three hours after AOT treatment. Laboratory tests at Temple University performed on a sample of crude oil provided by TransCanada of the same type treated in that specific field test measured a 27% reduction in viscosity in the laboratory immediately following treatment. Allowing for the actual three-hour of recovery time of the field test measurement, the resulting field test viscosity reduction of 23% correlates very well to the 27% viscosity reduction achieved in the laboratory setting.












zerosnoop

10/08/16 7:09 PM

#33395 RE: mr_sano #33393

ABSOLUTELY FALSE according to KINDER MORGAN. IT'S NOW CONFIRMED that KINDER MORGAN wants the PROVEN AOT as per the EVIDENCE below

http://ir.qsenergy.com/press-releases/detail/2020


QS Energy's AOT Crude Oil Friction Reduction Hardware in Review Phase for Systemic Integration With Condensate Pipeline

SANTA BARBARA, CA -- (Marketwired) -- 06/06/16 -- QS Energy, Inc. (the "Company") (OTCQX: QSEP), a developer of integrated technology solutions for the energy industry, today announced its AOT (Applied Oil Technology) system will be benchmarked on a variety of super-light and ultra-light crude oil due to its ongoing positive evaluation on a major crude and condensate pipeline serving the Eagle Ford Shale in South Texas. In making the announcement, Greggory M. Bigger, QS Energy Chief Executive Officer and Chairman, stated, "In collaboration with our partner, we've mapped out the path forward to most effectively meet their objectives, which include laboratory testing of additional crude oil products followed by hydraulic analysis based on those results to determine the appropriate friction and viscosity reduction goals for our AOT system."

Designed to be installed adjacent to pipeline pumping stations, AOT subjects crude oil to a high-voltage/low-amperage electrical field to reduce its viscosity, which permits it to flow in higher volume. By integrating the AOT power supply with the hardware that controls and monitors a pipeline, typically situated in a remotely located control room, AOT will provide pipeline operators with the ability to monitor and react to real-time data to gain the best possible operational efficiencies.

"Upon delivery of our detailed use case study and cost-benefit projections, we anticipate integrating the AOT power supply with the pipeline's SCADA (Supervisory Control and Data Acquisition) system to provide remote operation of the AOT unit and automate its operation according to changes in the product transported," Mr. Bigger added. "QS Energy has also been asked to develop an installation-specific operational and systems handbook to gain maximum performance from the continuous AOT on a batch condensate system."

Initially installed on the condensate line last year, the customized AOT unit has undergone a rigorous value engineering process to achieve flow rates at levels predicted in earlier laboratory testing of samples of the ultra-light crude carried by the pipeline. Further viscosity reduction assessments of additional condensate samples are scheduled to be conducted at Temple University's Department of Physics, with hydraulic analysis of the additional data to be performed by QS Energy engineers.

"We're delighted that the recent performance review of AOT has resulted in an opportunity for us to demonstrate its friction reduction capabilities in a batched, multi-grade environment," Mr. Bigger added. "The industry's drive toward greater efficiencies and carbon neutrality demand technologies capable of reducing emissions related to the production and transport of crude oil while improving the economics of doing business in a lower spot price market. We believe AOT can play an important role in supporting our customers' commitment to producing energy more cost-efficiently and in an environmentally responsible manner."

For further information about QS Energy, Inc., visit www.QSEnergy.com, read our SEC filings at ir.stockpr.com/qsenergy/all-sec-filings and subscribe to Email Alerts at ir.stockpr.com/qsenergy/email-alerts to receive company news and shareholder updates.

Safe Harbor Statement:
Some of the statements in this release may constitute forward-looking statements under federal securities laws. Please visit the following link for our complete cautionary forward-looking statement: www.qsenergy.com/site-info/disclaimer

About AOT (Applied Oil Technology)
Developed in partnership with scientists at Temple University in Philadelphia, AOT (Applied Oil Technology) is the energy industry's first crude oil pipeline flow improvement solution using an electrical charge to coalesce microscopic particles native to unrefined oil, thereby reducing viscosity. Over the past four years AOT has been rigorously prepared for commercial use with the collaboration of over 30 engineering teams at 19 independent oil production and transportation entities interested in harnessing its proven efficacy to increase pipeline performance and flow, drive up committed and uncommitted toll rates for pipeline operators, and reduce pipeline operating costs. Although AOT originally attracted the attention of pipeline operators interested in improving their takeaway capacity during an historic surge in upstream output resulting from enhanced oil recovery techniques, the technology now represents the premiere solution for improving the profit margins of producers and transporters during today's economically challenging period of low spot prices and supply surplus.

About QS Energy, Inc.

QS Energy, Inc. (OTCQX: QSEP), provides the global energy industry with patent-protected industrial equipment designed to deliver measurable performance improvements to crude oil pipelines. Developed in partnership with leading crude oil production and transportation entities, QS Energy's high-value solutions address the enormous capacity inadequacies of domestic and overseas pipeline infrastructures that were designed and constructed prior to the current worldwide surge in oil production. In support of our clients' commitment to the responsible sourcing of energy and environmental stewardship, QS Energy combines scientific research with inventive problem solving to provide energy efficiency 'clean tech' solutions to bring new efficiencies and lower operational costs to the upstream, midstream and gathering sectors. More information is available at: www.QSEnergy.com

Source: QS Energy, Inc.

Image Available: www.marketwire.com/library/MwGo/2016/6/6/11G101475/Images/qsenergyphoto-881fea6ce8f4afcebc00f78dfe9b8200.jpg

Company Contact
QS Energy, Inc.
Tel: +1 805 845-3581
E-mail: investor@QSEnergy.com

Investor Relations
QS Energy, Inc.
Tel: +1 805 845-3581
E-mail: investor@QSEnergy.com

Source: QS Energy, Inc.

Released June 6, 2016