InvestorsHub Logo
icon url

frosr6

08/30/15 7:54 PM

#39973 RE: BioNewton #39968

How is it better??
icon url

frosr6

08/30/15 8:14 PM

#39974 RE: BioNewton #39968

Ok 1999 to 2015 =16 years.

Q. What makes your platform technology, Cell-in-the-Box, a value proposition?
KENNETH:
Cell-in-a-Box® is a remarkably versatile platform technology that can be used to develop treatments for all kinds of serious diseases, such as cancer and insulin-dependent diabetes. Cell-in-a-Box® is a type of technology where genetically modified living cells are encapsulated in small, pin-head-sized, spherical protective cocoons. These cocoons, or capsules, have pores in their outer shell that allow nutrients to enter the capsules to nourish the cells inside and to allow waste products from those cells to leave the capsules. The capsules are protective of the cells inside them because their pores are too small to allow the encapsulated cells to escape, where they would be destroyed by the patient’s immune system, and the pores are too small to allow the cells from the patient’s immune system to enter the capsules and destroy the cells inside.
Cell encapsulation has been around for many years. A number of materials have been used, the most common being alginate which is derived from seaweed. PharmaCyte Biotech is using cellulose sulphate for its cell encapsulation. Cellulose sulphate offers a number of advantages over other encapsulation materials because it is derived from a naturally occurring plant derived-polymer that is relatively easy to obtain at reproducible quality and is free from impurities. In addition, it has excellent biocompatibility. Cells in the capsules survive well and even grow within the capsules. Further, once the capsules are implanted into a body, they are not rejected by the body’s immune system and there is no immune or inflammatory response against the capsule material or the cells within the capsules. Cellulose sulphate encapsulated cells have already been tested in two human clinical trials and have been shown to be safe. In these trials, the cells in the capsules allowed lower, non-toxic doses of a chemotherapy drug to have equal or greater anti-tumor effects than standard, toxic doses of the same drug.

http://www.pharmacytebiotech.com/qa-with-pharmacyte-ceo-kenneth-l-waggoner-on-pmcbs-new-direction/

What's different than this from 1999??>>>

Injection of encapsulated cells producing an ifosfamide-activating cytochrome P450 for targeted chemotherapy to pancreatic tumors.
The prognosis of pancreatic cancer is poor, and current medical treatment is mostly ineffective. The aim of this study was to design a new treatment modality in an animal model system. We describe here a novel treatment strategy employing a mouse model system for pancreatic carcinoma. Embryonal kidney epithelial cells were genetically modified to express the cytochrome P450 subenzyme 2B1 under the control of a cytomegalovirus (CMV) immediate early promoter. This CYP2B1 gene converts ifosfamide to its active cytotoxic compounds, phosphoramide mustard, which alkylates DNA, and acrolein, which alkylates proteins. The cells were then encapsulated in a cellulose sulphate formulation and implanted into preestablished tumors derived from a human pancreatic tumor cell line. Intraperitoneal administration of low-dose ifosfamide to tumor bearing mice that received the encapsulated cells results in partial or even complete tumor ablation. Such an in situ chemotherapy strategy utilizing genetically modified cells in an immunoprotected environment may prove useful for solid tumor therapy in man.

http://www.ncbi.nlm.nih.gov/m/pubmed/10415878/?i=4&from=/12698877/related