InvestorsHub Logo
Followers 10
Posts 997
Boards Moderated 0
Alias Born 01/17/2005

Re: None

Saturday, 11/10/2012 6:52:47 PM

Saturday, November 10, 2012 6:52:47 PM

Post# of 18483
Therapeutic Potential of RNA Interference
A New Molecular Approach to Antiviral Treatment for Hepatitis C

M. Motavaf, S. Safari, S. M. Alavian Nov 09, 2012Authors & Disclosures
J Viral Hepat. 2012;19(11):757-765. © 2012 Blackwell Publishing


Hepatitis C virus (HCV) infection remains a major cause of chronic liver disease with an estimated 170 million carriers worldwide. Current treatments have significant side effects and have met with only partial success. Therefore, alternative antiviral drugs that efficiently block virus production are needed. During recent decades, RNA interference (RNAi) technology has not only become a powerful tool for functional genomics but also represents a new therapeutic approach for treating human diseases including viral infections. RNAi is a sequence-specific and post-transcriptional gene silencing process mediated by double-stranded RNA (dsRNA). As the HCV genome is a single-stranded RNA that functions as both a messenger RNA (mRNA) and replication template, it is an attractive target for the study of RNAi-based viral therapies. In this review, we will give a brief overview about the history and current status of RNAi and focus on its potential application as a therapeutic option for treatment for HCV infection.

Introduction

Hepatitis C virus (HCV) is a major cause of chronic liver disease and hepatocellular carcinoma. More than 170 million individuals are affected with this virus worldwide.[1]

The current HCV antiviral therapy for interferon/ribavirin is successful in approximately half of the G1 cases. With the addition of the new FDA- and EMA-approved NS3 protease inhibitors, boceprevir and telaprevir, the rate of sustained virologic response in G1 has improved to 70%, still leaving an unmet clinical need. RNAi has been shown to be a naturally occurring process of sequence-specific gene silencing in plants and vertebrates.[2]

This process is an RNA-dependent gene silencing process that is controlled by the RNA-induced silencing complex (RISC) and is initiated by short double-stranded RNA molecules (dsRNA) in a cell's cytoplasm. The dsRNA can either be chemically synthesized as small inferring RNA (siRNA) then directly transfected into cells or can be produced inside the cell by introducing vectors that express short-hairpin RNA (shRNA) precursors of siRNAs. The process of shRNA into functional siRNA involves cellular RNAi machinery that naturally process genome encoded microRNAs (miRNA) that are responsible for cellular regulation of gene expression by different mechanisms.[3] To date, hundreds of miRNAs have been identified as human genome. These are 22–24 nucleotides in length and downregulate gene expression by attaching themselves to messenger RNAs (mRNAs) and preventing them from being translated into proteins.[4]

Because of the functional similarities between miRNA and siRNA, which is involved in the inhibition of viruses and silencing of transposable elements in plants, insects, fungi and nematodes, exogenously introduction of siRNA into the target cells by various transfection methods may trigger the RNAi pathway against target gene. Many viruses, including HCV, produce a transitory double-stranded RNA during replication that can serve as RNA target for RNAi pathway. This makes HCV an attractive target for RNAi therapy. Whether it will ultimately be necessary is dependent on the outcome of current studies looking at the efficacy of interferon-free combination therapeutic regimes that include protease, polymerase and NS5A inhibitors.
Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent AEMD News