InvestorsHub Logo
Followers 4
Posts 1030
Boards Moderated 1
Alias Born 06/04/2004

Re: None

Wednesday, 08/10/2005 11:44:28 AM

Wednesday, August 10, 2005 11:44:28 AM

Post# of 186
Interesting LU article:

INDUSTRIAL MANAGEMENT & TECHNOLOGY
Learning at Mother Nature's Knee
Designs fine-tuned by billions of years of evolution inspire 21st-century inventions through the science of biomimicry.
By John Greenwald

· Learning at Mother Nature's Knee
· Hybrid Magic for Trucks
· A Few Clouds in the Forecast
· Zapping Cancer Cells
· This Is Not a BMW Plant
· Archive

Archer Daniels Midland
Lucent Technologies
Nike

Natural selection has been at work for eons, creating designs that outperform anything humans have yet devised: abalone shells tougher than the hardest ceramic, spider silk stronger than steel, a sea creature called a brittle star that can focus light ten times more sharply than the finest man-made lens. Today researchers are studying such forms in hopes of hatching new products and technologies. The work is advancing at companies as varied as Lucent Technologies and Nike, which this year retained a biologist to advise its shoe and clothing designers, and at centers like the new Biodesign Institute at Arizona State University, which plans to build nearly $350 million of laboratory and conference facilities over the next few years.

It is all part of an emerging science known as biomimicry that studies nature's models and imitates and adapts them for human use. Some of biomimicry's first fruits can already be found in such disparate applications as fabrics and house paints that emulate the uncanny ability of lotus leaves to repel dirt and water, carpets styled after the randomness of stones and leaves on forest floors, and superefficient fans and rotors.

The gap between natural inspiration and profitable invention sometimes remains hard to bridge. Three years ago a Canadian company called Nexia Biotechnologies generated headlines when it spliced spider genes into goats and created what it called the world's first man-made spider silk from the animals' milk. It named the product BioSteel. But the company couldn't economically mass-produce the fibers, and it quietly scuttled the project this year. Another goat-inspired product, Nike's Goat-Tek, a late-1990s trail shoe with a sole modeled on a mountain goat's hoof, never bounded off store shelves and was discontinued. Some researchers remain skeptical. Asks Rustum Roy, professor emeritus of materials science at Pennsylvania State University: "Biomimicry may produce something useful in very tiny areas, but what else are we going to apply it to? Not to highways or steel mills."

The speculative nature of many biomimicry projects means that they require big investments that can come only from government agencies, universities, and major corporations. At Lucent's Bell Laboratories, researcher Joanna Aizenberg has spent three years studying the brittle star, a relative of sea urchins and starfish. The five arms of the brittle star bristle with thousands of microscopic crystalline lenses. Together they act like one big eye, enabling the hand-sized invertebrate to spot predators and find hiding places in the shallow Caribbean waters where it lives. The curved lenses, which look like tiny bumps when seen under an electron microscope, are virtually perfect optical instruments, better than anything current technology allows.

It' s not just the lenses that captivate Aizenberg and her colleagues. The tiny crystals are surrounded by pigment-bearing pores that adjust the amount of light the lenses let in. "We don't want to re-create the brittle-star eye but to replicate the structure of the lens and pores," she says. Among other applications, the replicated array could give rise to faster fiber-optic networks and be used to replace the expensive lithographic masks that etch microscopic circuits onto silicon chips. Aizenberg estimates that such applications could be "maybe five years away," while conceding that's only a rough guess.

Probing nature at the molecular level is a hallmark of recent biomimicry work. Past efforts were confined to the macro world: Velcro began as a gleam in the eye of a Swiss inventor who studied the tiny hooks on cockleburs that stuck to his dog's fur. "Today's discipline focuses on small-scale remaking of biological materials," says Ilhan Aksay, professor of chemical engineering at Princeton University and principal investigator for the three-year-old Biologically Inspired Materials Institute, a consortium of research institutions funded by NASA to conduct basic research into space-flight materials.

http://www.fortune.com/fortune/imt/0,15704,1091139,00.html?promoid=aol

G'day Mates.

Aussie


Australia is a beautiful place with wonderful people that just love Americans. You've got to go there some day. Give it a go Mate.

Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent LU News