InvestorsHub Logo
Followers 14
Posts 549
Boards Moderated 0
Alias Born 12/16/2010

Re: None

Friday, 04/15/2011 9:06:00 PM

Friday, April 15, 2011 9:06:00 PM

Post# of 155572
So I have been thinking about Lithium lately, especially after Jesse Ventura went on Piers Morgan and began talking about the U.S. role in Lithium claims.

I really wan't to try and figure out why we gotta go to Chile to mine a limited supply energy source.. seems kinda retarded to me in a way.. why can't we make a battery that doesn't require a special and/or rare commodity to run!

So I began googling/wikipedia until I found this article

Molten Salt batteries

http://en.wikipedia.org/wiki/Molten_salt_battery

(( just some food for thought if anyone else is feeling the same about lithium.

sorry if this offends anybody, I am just trying to find some answers with the madness on MMTE and other Lithium stocks. ))

----------------------------------------------------------- c/p
As per Wikipedia:

The ZEBRA battery operates at 245 °C (473 °F) and utilizes molten sodium aluminumchloride (NaAlCl4), which has a melting point of 157 °C (315 °F), as the electrolyte. The negative electrode is molten sodium. The positive electrode is nickel in the discharged state and nickel chloride in the charged state. Because nickel and nickel chloride are nearly insoluble in neutral and basic melts, intimate contact is allowed, providing little resistance to charge transfer. Since both NaAlCl4 and Na are liquid at the operating temperature, a sodium-conducting ß-alumina ceramic is used to separate the liquid sodium from the molten NaAlCl4. This battery was invented in 1985 by the Zeolite Battery Research Africa Project (ZEBRA) group led by Dr. Johan Coetzer at the Council for Scientific and Industrial Research (CSIR) in Pretoria, South Africa, hence the name ZEBRA battery. In 2009, the battery had been under development for more than 20 years. The technical name for the battery is Na-NiCl2 battery.
The ZEBRA battery has an attractive specific energy and power (90 Wh/kg and 150 W/kg). For comparison, LiFePO4 lithium iron phosphate batteries store 90–110 Wh/kg and the more common LiCoO2 lithium ion batteries store 150–200 Wh/kg. Nano Lithium-Titanate Batteries store energy and power of (116 Wh & 72 Wh/kg) and (1,250 W & 760 W/kg).[3] The ZEBRA's liquid electrolyte freezes at 157 °C (315 °F), and the normal operating temperature range is 270 °C (518 °F) to 350 °C (662 °F). The ß-alumina solid electrolyte that has been developed for this system is very stable, both to sodium metal and the sodium aluminumchloride. The primary elements used in the manufacture of ZEBRA batteries, Na, Cl and Al have much higher worldwide reserves and annual production than the Li used in Li-ion batteries.[4] Lifetimes of over 1500 cycles and five years have been demonstrated with full-sized batteries, and over 3000 cycles and eight years with 10- and 20-cell modules. Vehicles powered by ZEBRA batteries have covered more than 2 million km. Modec Electric Van uses ZEBRA batteries for the 2007 model. The Th!nk City also uses ZEBRA batteries.[5]
When not in use, ZEBRA batteries are typically left under charge so that they will remain molten and be ready for use when needed. If shut down and allowed to solidify, a reheating process must be initiated that may require up to two days to restore the battery pack to the desired temperature and impart a full charge. This reheating time varies depending on the state-of-charge of the batteries at the time of their shut down, battery-pack temperature, and power available for reheating. After a full shut down of the battery pack, three to four days will usually elapse before a fully-charged battery pack loses enough energy to cool and solidify.[citation needed]

---------------------------------------------------- c/p


all imo do your own DD..