InvestorsHub Logo
Followers 8
Posts 432
Boards Moderated 0
Alias Born 03/31/2010

Re: Rick-UK post# 119125

Monday, 12/27/2010 2:55:41 PM

Monday, December 27, 2010 2:55:41 PM

Post# of 233377
If in the Scientific Report on the O.D. Olympic Dam it also calles it "Sub Econimic" Copper.....how does the term "Sub Econimic" ....relate or translate in to a BAD THING when the Kat pr uses the exact same term as this scientific description of Olympic Dam?.... both speak of Hemmitate ....check......both speak of FE.....check.....Both also speak of "sub econimic copper" .. I do not know all the aynsers.....but I do like the PR much more than I did last thursday as it relates to the word sub econimic copper that is for sure......
--------------------------------------------------------------------------------

Articles

Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia
Evgeniy N. Bastrakov and Roger G. Skirrow
Geoscience Australia, GPO Box 378, Canberra, A.C.T., Australia 2601

Garry J. Davidson

University of Tasmania, Private Box 79, Hobart, Tasmania, Australia 7001

Corresponding author: e-mail, evgeniy.bastrakov@ga.gov.au

Geologic observations suggest two stages of hydrothermal activity at a number of presently subeconomic iron oxide copper-gold systems in the Olympic Dam district, eastern Gawler craton. They contain high-, and moderate- to low-temperature Fe oxide-rich hydrothermal alteration. The mineral assemblages include magnetite-calc-silicate-alkali feldspar ± Fe-Cu sulfides and hematite-sericite-chlorite-carbonate ± Fe-Cu sulfides ± U, REE minerals. In all documented prospects, the minerals of the hematitic assemblages replace the minerals of the magnetite-rich assemblages.

The bulk of the subeconomic Cu-Au mineralization is associated with the hematitic alteration assemblages. Microanalysis by proton ion probe (PIXE) of hypersaline fluid inclusions in magnetite-rich assemblages, however, demonstrates that significant amounts of copper (>500 ppm) were transported by the early-stage high-temperature (>400°C) fluids responsible for the magnetite-rich alteration. These brine inclusions contain multiple solid phases (liquid + vapor + multiple solids) including chalcopyrite in some cases. In comparison, inclusions of the hematitic stage are relatively simple liquid + vapor types, with homogenization temperatures of 200° to 300°C and containing 1 to 8 wt percent NaCl equiv. The Br/Cl ratios of the magnetite-forming fluids measured by PIXE lie beyond the range of typical magmatic and/or mantle values, allowing for the possibility that the fluids originated as brines from a sedimentary basin or the crystalline basement.

Sulfur isotope compositions of chalcopyrite and pyrite demonstrate that sulfur in both alteration assemblages was derived either from cooling magmas and/or crystalline igneous rocks carried by relatively oxidized fluids (SO42– H2S, 34Ssulfides from –5 to +2) or from crustal sedimentary rocks (34Ssulfides from +5 to +10). Oxygen and hydrogen isotope compositions of waters calculated for minerals of the magnetite-rich assemblage have 18O values of +7.7 to +12.8 per mil and D values of –15 to –21 per mil. The only available 18O and Dfluid values for the hematitic assemblage are +4.7 and –9 per mil, respectively. The isotopic compositions of both fluids, coupled with the available literature data, can be explained in terms of fluid reequilibration with felsic Gawler Range Volcanics or other felsic igneous rocks in the region and with metasedimentary rocks of the Wallaroo Group at low water-to-rock ratios prior to their arrival at the mineralization sites.

The lack of significant copper mineralization associated with magnetite-forming fluids that carried copper suggests that there was no effective mechanism of saturation of copper minerals or the quantity of these fluids was not sufficient to produce appreciable copper mineralization. Association of the copper-gold mineralization with the hematitic alteration in the subeconomic prospects can be explained by a two-stage model in which preexisting hydrothermal magnetite with minor associated copper-gold mineralization was flushed by late-stage oxidized brines that had extensively reacted with sedimentary or metamorphic rocks. The reduction of these brines, driven by conversion of magnetite to hematite, resulted in precipitation of copper and gold. The oxidized brines may have contributed additional copper and gold to the system in addition to upgrading preexisting subeconomic Cu-Au mineralization. When compared to published models for the Olympic Dam deposit, the new data for fluids in subeconomic Fe-oxide Cu-Au prospects of the Olympic Dam district indicate the diversity of origins of iron oxide-copper-gold systems, even within the same geologic region.






This article has been cited by other articles:




J. James-Smith, J. Cauzid, D. Testemale, W. Liu, J.-L. Hazemann, O. Proux, B. Etschmann, P. Philippot, D. Banks, P. Williams, et al.
Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy
American Mineralogist, July 1, 2010; 95(7): 921 - 932.
[Abstract] [Full Text] [PDF]


--------------------------------------------------------------------------------




D. I. Groves, F. P. Bierlein, L. D. Meinert, and M. W. Hitzman
Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits
Economic Geology, May 1, 2010; 105(3): 641 - 654.
[Abstract] [Full Text] [PDF]


--------------------------------------------------------------------------------




R. G. Skirrow, R. G. Skirrow, and G. J. Davidson
A Special Issue Devoted to Proterozoic Iron Oxide Cu-Au-(U) and Gold Mineral Systems of the Gawler Craton: Preface
Economic Geology, December 1, 2007; 102(8): 1373 - 1375.
[Full Text] [PDF]


--------------------------------------------------------------------------------




N. G. Direen, N. G. Direen, and P. Lyons
Regional Crustal Setting of Iron Oxide Cu-Au Mineral Systems of the Olympic Dam Region, South Australia: Insights from Potential-Field Modeling
Economic Geology, December 1, 2007; 102(8): 1397 - 1414.
[Abstract] [Full Text] [PDF]


--------------------------------------------------------------------------------




R. G. Skirrow, R. G. Skirrow, E. N. Bastrakov, K. Barovich, G. L. Fraser, R. A. Creaser, C. M. Fanning, O. L. Raymond, and G. J. Davidson
Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia
Economic Geology, December 1, 2007; 102(8): 1441 - 1470.
[Abstract] [Full Text] [PDF]


--------------------------------------------------------------------------------




G. J. Davidson, G. J. Davidson, H. Paterson, S. Meffre, and R. F. Berry
Characteristics and Origin of the Oak Dam East Breccia-Hosted, Iron Oxide Cu-U-(Au) Deposit: Olympic Dam Region, Gawler Craton, South Australia
Economic Geology, December 1, 2007; 102(8): 1471 - 1498.
[Abstract] [Full Text] [PDF]


--------------------------------------------------------------------------------







--------------------------------------------------------------------------------
JOURNAL HOME HELP CONTACT PUBLISHER SUBSCRIBE ARCHIVE SEARCH TABLE OF CONTENTS
Copyright © 2010 by Society of Economic Geologists