Followers | 130 |
Posts | 18112 |
Boards Moderated | 0 |
Alias Born | 01/16/2007 |
Monday, July 28, 2008 3:57:05 PM
USSE/SSTP In New BioMass Magazine Article
Breaking Through to the Other Side of Biofuels
With unwavering mettle, John Rivera of Sustainable Power Corp. intends to introduce a biocrude oil product, called Vertroleum, into the global fuel supply chain. Despite its detractors, the company continues to refine what it refers to as the “Rivera Process” at its Texas demonstration facility. Biomass Magazine traveled there to see how the production process works.
By Bryan Sims / Story & Photos
Most of us know that crude oil is formed from the fossilized remains of dead plants and animals by hundreds of millions of years of exposure to intense heat and pressure found in the Earth’s crust. This general theory is one that has been accepted by the scientific community for centuries and passed on from generation to generation. What if this process could be accelerated a billionfold and could be refined and marketed right here in our own backyard from renewable nonfood based biomass sources?
Defying the aforementioned theory of crude oil creation, Sustainable Power Corp. has figured out a way to do just that. Established by founder and Chairman John Rivera from its Natchez, Miss.-based parent company U.S. Sustainable Energy Corp. in 2006, Sustainable Power Corp. also goes by the name Baytown Green Energy Consortium. The company uses a proprietary catalytic process technology capable of producing between 6,700 and 24,000 gallons per day of both light and heavy fractions of its branded biocrude oil—Vertroleum—from its four-reactor demonstration facility in Baytown, Texas, using any type of hydrocarbon waste biomass imaginable.
“It took 20 years of research to come up with this technology,” says Rivera, a West Palm Beach, Fla., native who earned a PhD in computer science from the Massachusetts Institute of Technology and an honorary doctoral degree from South America. Rivera was nominated for the Nobel Peace Prize last year in Central America. “I’m against all academia,” Rivera says. “I’ve had scientists and engineers tell me that all crude oil comes from vegetation and 50 billion years later you get oil from the ground. This isn’t a production process; this is a ‘time machine.”
Before establishing Sustainable Power, however, Rivera’s journey to find prominence came with inherent challenges. Previously, he had been refining and developing an innovative catalytic pyrolysis conversion process while working for GWE Systems Inc., a start-up company that explored the conversion of tire scraps into oil and gas. In July 2003, the company initially pursued a proposed joint venture with a Mexican tire recycler to convert raw materials recovered from the tires in various subsidiary ventures, including a project to supply excess oil and gas to the Mexican power grid.
The Rivera and GWE Systems project went defunct, but Rivera later invested more than $500,000 to build his own 40-foot reactor to serve that same purpose. Being a hydrocarbon feedstock, he knew that if he could filter the microscopic tire particles that have been processed by mechanical means he could create a black carbon, a critical ingredient used for government print ink and acrylic paint for the marine industry and the military. Rivera also offered his carbon product to the automotive industry where he sold it as an agent in spray-on truck bed liner. After not finding profit in those industries, Rivera then had a notion to process soybeans in the reactors. He took 20 pounds of soybeans and produced 2 gallons of fuel, 1½ hours worth of biogas and a solid carbon byproduct.
“At the time I thought I had made biodiesel,” Rivera says. He was wrong.
He sent his product to AmSpec Services LLC for further analysis. The testing company toured the Baytown demonstration facility to see how Rivera produced the peculiar organic product. For 20 years, AmSpec has independently analyzed and measured petroleum and petrochemical products at its Texas and New Jersey testing locations.
“They told me I’m an idiot,” he says. “They told me that I’m making a light petroleum distillate out of vegetation. It’s not biodiesel. I guess that’s how this whole thing started. It just kind of snowballed from there.”
Inside the ‘Rivera Process’
According to Rivera, Vertroleum is created by “chemical hydrolysis with a modified pyrolysis and the use of nano bacteria,” which he dubbed the “Rivera Process.”
Containing the same hydrocarbons as petroleum crude oil, Vertroleum is a mixture of hydrocarbons C-5 pentane and C-20 eicosane. When used in the same distillation process used by petroleum companies, Vertroleum can be further refined to produce a biogasoline (BG-100), a substitute for gasoline E85 in flexible-fuel vehicles, biokerosene (jet fuel), a diesel blendstock (OD-66), naptha (an octane enhancer), heating fuel, refined diesel, pharmaceutical grade glycerin, tars and plastics. The company’s biocrude oil can be refined into 69 other renewable fuels or chemical materials as certified by AmSpec. In addition, AmSpec verified that most of the bio-crude “cuts” meet or exceed ASTM standards whereby the product doesn’t need tier testing.
Sustainable Power can use a variety of cellulosic biomass feedstocks including palm waste, jatropha, milo, rapeseed, chopped soybeans, sunflowers, distillers dried grains and other raw agricultural waste materials. Before feedstocks enter its 60-foot reactor, Sustainable Power tests the feasibility of the feedstock by putting it through a mini reactor, enabling the firm to document data such as input volume versus yield, natural gas output and fertilizer output.
“We’re totally self-sufficient and not dependent on any food-based feedstock,” Rivera says.
In January, Sustainable Power ran initial tests using 20 pounds of 5 percent oil-content algae with 40 percent water content, which resulted in an ignitable product. The algae was
supplied by Green Star Products, which is negotiating with Sustainable Power to install a series of algae bioreactors at its Baytown facility, which Rivera expects will yield encouraging results.
“[Rivera] is definitely producing biocrude oil that has some idiosyncrasies to it, but every crude oil has some idiosyncrasies to it,” says Jim Ford, senior vice president of operations for AmSpec and member of Sustainable Power’s board of directors. “I think it has great potential and it could be the answer to the [energy] problems we’re having in the U.S. and elsewhere in the world.”
The secret of the Rivera Process is reliant on a particular nano bacterium catalyst that promotes a chemical reaction to transform the biomass waste feedstocks into a syngas where it travels through the reactors’ elongated chrome alloy tubes that allow for expansion due to high heat. The process reacts in a vacuum in an ambient temperature less than 800 degrees Fahrenheit. As opposed to conventional pyrolysis methods, Sustainable Power’s BG-100 and diesel blendstocks contain less than 1 percent water content because the oxygen molecules remain intact so the finished product is naturally oxygenated. The entire process takes a little more than eight minutes, regardless of the amount of feedstock introduced largely due to Rivera’s surreptitious, yet highly effective catalyst.
“I can give you or anyone the blueprints of my reactors and my building structure, but it means nothing without my catalyst,” he says. “The Oak Ridge National Laboratory in Tennessee, the research arm of the U.S. DOE, and the site where the atomic bomb was developed, has been trying to break my catalyst now for the last 10 years.”
With the help of its on-site contractor Blue Harbor Energy, Sustainable Power’s Baytown facility is rapidly becoming energy independent. The company is expanding its production capacity from 2.4 MMgy to 8.7 MMgy, including the addition of a 90,000-foot rail loop to export the finished product and import feedstock and supplies. In addition to producing marketable biocrude oil, Sustainable Power produces other salable byproducts such as an effective 7-3-7 fertilizer, mineral water used in the production process, internal use and production of electricity and a clean-burning renewable natural gas. The company intends to construct a 500 megawatt power plant on-site and plans to sell electricity and renewable natural gas to local utility grids, which will enable it to buy and sell carbon credits.
In August 2007, AmSpec put 20 pounds of crushed soybeans into Sustainable Power’s reactor and it yielded 10.69 pounds of liquid oil, 3.77 pounds of gas and 5.54 pounds of 7-3-7 fertilizer. Because the soybeans were in 60-pound bags, AmSpec multiplied the results three times, and produced 43.38 pounds of fuel and 16.62 pounds of fertilizer. With an average fuel weight of 7.5 pounds per gallon, Sustainable Power’s process yields about 5.7 gallons per bushel.
“In any refinery there is going to have to be a lot more research done on [biocrude oil], but it’s also going to have to be treated as a crude oil, I think,. in order to get the full yield of everything,” Ford says.
Looking Ahead
On the domestic front, Sustainable Power is involved in a joint venture project with Farmers Sustainable Energy International to utilize its proprietary technology in Quincy, Ill., to convert cellulosic and noncellulosic feedstocks into biocrude oil, BG-100 and organic fertilizer.
“We’ve got a mini reactor from [Rivera] that we can take and test various feedstocks based on different locations,” says Scott Hoerr, president of FSEI and member of Sustainable Power’s board of directors. Hoerr is also a founding member of Missouri’s first farmer-owned ethanol plant, Northeast Missouri Grain Processors. “There are a lot of ways to approach and attack this and there’s more that we still don’t know about this process, but what we do know is pretty exciting.”
In April, to promote business growth internationally, Sustainable Power established a Central American subsidiary, Sustainable Power Corp. Central America Guatemala S.A. Because Sustainable Power’s reactors are modular and transportable, the company is initiating a campaign to deploy similar biomass reactor projects in Central America to displace imported oil. In May, the company qualified for approximately €4 billion ($6.4 billion) from the World Bank to build 400 bioreactors on 6,250 acres of land in Guatemala, where it will have the capacity to produce 30 million gallons of biocrude oil per day and seven gigawatts of electricity, which will be used by the seven-country Central American Parliament or Parlacen. In May, Sustainable Power formed a strategic alliance with L.Solé, a Spanish-based engineering, procurement and contracting firm, to assist in its Guatemalan venture and aid in the expansion of its Baytown facility.
Parlacen President Julio Gonzalez Gamarra endorsed Sustainable Power’s proprietary technology when he attended a public demonstration held in Baytown in April. Gamarra also became a member of the company’s board of directors in March to help facilitate the company’s Central American endeavors. Sustainable Power is also involved in projects in Malaysia and Haiti.
Sustainable Power Corp. has finalized a strategic alliance with Pemco Energy AS, a Norwegian-based trading and industrial group that manufactures, distributes and sells oil and chemical-based products.
Teaming up with Pemco, Sustainable Power (shares are traded under the symbol SSTP) has created a European subsidiary, SSTP Europe, which will be the exclusive representative for Sustainable Power throughout Europe. The joint venture intends to install, own and operate facilities, produce and market green biofuels, including the use of biofuel for power generation, and generate green certificates.
Pemco will be responsible for the organization and set up, enabling SSTP Europe to operate all the plants across Europe and establish long-term power purchase contracts with energy companies in the region. Pemco, in close cooperation with Sustainable Power, will secure long-term agreements with low-cost sustainable feedstock producers from major land areas in Eastern Europe, with intentions of networking to South America, Australia and Africa.
Additionally, Pemco has entered into a stock subscription agreement for 50 million restricted shares of Sustainable Power stock for $2 million. Pemco has agreed to contribute $6 million to the buildup of SSTP Europe. “The key personnel of Pemco have a long history of establishing successful international transactions,” Rivera says. “Collaborating with Pemco is a major milestone for SSTP. Pemco has the experience, personnel, financial resources and ‘green’ background to bring about the successful commercialization of SSTP across Europe.”
Because Sustainable Power’s biocrude oil can be readily distributed into the existing U.S. fuel supply network, the company has attracted interest from U.S.-based oil refiners such as Kinder Morgan and George E. Warren. Rivera hasn’t set a price for his biocrude oil, but he estimates that it could be sold in the U.S. market at a minimum of $42 per barrel. He is also willing to partner with U.S. and international ethanol and biodiesel companies looking to offset their operating costs and add another revenue stream.
“You’re seeing history in the making,” Rivera says. “We’re changing the face of energy. I’m not out to hurt the biodiesel or ethanol industry. I’m interested in wastes. I’m not interested in taking a mouthful of food away from anybody or any animal.”
Bryan Sims is a Biomass Magazine staff writer. Reach him at bsims@bbiinternational.com or (701) 746-4950.
http://www.biomassmagazine.com/article.jsp?article_id=1835&q=&page=all
.
Breaking Through to the Other Side of Biofuels
With unwavering mettle, John Rivera of Sustainable Power Corp. intends to introduce a biocrude oil product, called Vertroleum, into the global fuel supply chain. Despite its detractors, the company continues to refine what it refers to as the “Rivera Process” at its Texas demonstration facility. Biomass Magazine traveled there to see how the production process works.
By Bryan Sims / Story & Photos
Most of us know that crude oil is formed from the fossilized remains of dead plants and animals by hundreds of millions of years of exposure to intense heat and pressure found in the Earth’s crust. This general theory is one that has been accepted by the scientific community for centuries and passed on from generation to generation. What if this process could be accelerated a billionfold and could be refined and marketed right here in our own backyard from renewable nonfood based biomass sources?
Defying the aforementioned theory of crude oil creation, Sustainable Power Corp. has figured out a way to do just that. Established by founder and Chairman John Rivera from its Natchez, Miss.-based parent company U.S. Sustainable Energy Corp. in 2006, Sustainable Power Corp. also goes by the name Baytown Green Energy Consortium. The company uses a proprietary catalytic process technology capable of producing between 6,700 and 24,000 gallons per day of both light and heavy fractions of its branded biocrude oil—Vertroleum—from its four-reactor demonstration facility in Baytown, Texas, using any type of hydrocarbon waste biomass imaginable.
“It took 20 years of research to come up with this technology,” says Rivera, a West Palm Beach, Fla., native who earned a PhD in computer science from the Massachusetts Institute of Technology and an honorary doctoral degree from South America. Rivera was nominated for the Nobel Peace Prize last year in Central America. “I’m against all academia,” Rivera says. “I’ve had scientists and engineers tell me that all crude oil comes from vegetation and 50 billion years later you get oil from the ground. This isn’t a production process; this is a ‘time machine.”
Before establishing Sustainable Power, however, Rivera’s journey to find prominence came with inherent challenges. Previously, he had been refining and developing an innovative catalytic pyrolysis conversion process while working for GWE Systems Inc., a start-up company that explored the conversion of tire scraps into oil and gas. In July 2003, the company initially pursued a proposed joint venture with a Mexican tire recycler to convert raw materials recovered from the tires in various subsidiary ventures, including a project to supply excess oil and gas to the Mexican power grid.
The Rivera and GWE Systems project went defunct, but Rivera later invested more than $500,000 to build his own 40-foot reactor to serve that same purpose. Being a hydrocarbon feedstock, he knew that if he could filter the microscopic tire particles that have been processed by mechanical means he could create a black carbon, a critical ingredient used for government print ink and acrylic paint for the marine industry and the military. Rivera also offered his carbon product to the automotive industry where he sold it as an agent in spray-on truck bed liner. After not finding profit in those industries, Rivera then had a notion to process soybeans in the reactors. He took 20 pounds of soybeans and produced 2 gallons of fuel, 1½ hours worth of biogas and a solid carbon byproduct.
“At the time I thought I had made biodiesel,” Rivera says. He was wrong.
He sent his product to AmSpec Services LLC for further analysis. The testing company toured the Baytown demonstration facility to see how Rivera produced the peculiar organic product. For 20 years, AmSpec has independently analyzed and measured petroleum and petrochemical products at its Texas and New Jersey testing locations.
“They told me I’m an idiot,” he says. “They told me that I’m making a light petroleum distillate out of vegetation. It’s not biodiesel. I guess that’s how this whole thing started. It just kind of snowballed from there.”
Inside the ‘Rivera Process’
According to Rivera, Vertroleum is created by “chemical hydrolysis with a modified pyrolysis and the use of nano bacteria,” which he dubbed the “Rivera Process.”
Containing the same hydrocarbons as petroleum crude oil, Vertroleum is a mixture of hydrocarbons C-5 pentane and C-20 eicosane. When used in the same distillation process used by petroleum companies, Vertroleum can be further refined to produce a biogasoline (BG-100), a substitute for gasoline E85 in flexible-fuel vehicles, biokerosene (jet fuel), a diesel blendstock (OD-66), naptha (an octane enhancer), heating fuel, refined diesel, pharmaceutical grade glycerin, tars and plastics. The company’s biocrude oil can be refined into 69 other renewable fuels or chemical materials as certified by AmSpec. In addition, AmSpec verified that most of the bio-crude “cuts” meet or exceed ASTM standards whereby the product doesn’t need tier testing.
Sustainable Power can use a variety of cellulosic biomass feedstocks including palm waste, jatropha, milo, rapeseed, chopped soybeans, sunflowers, distillers dried grains and other raw agricultural waste materials. Before feedstocks enter its 60-foot reactor, Sustainable Power tests the feasibility of the feedstock by putting it through a mini reactor, enabling the firm to document data such as input volume versus yield, natural gas output and fertilizer output.
“We’re totally self-sufficient and not dependent on any food-based feedstock,” Rivera says.
In January, Sustainable Power ran initial tests using 20 pounds of 5 percent oil-content algae with 40 percent water content, which resulted in an ignitable product. The algae was
supplied by Green Star Products, which is negotiating with Sustainable Power to install a series of algae bioreactors at its Baytown facility, which Rivera expects will yield encouraging results.
“[Rivera] is definitely producing biocrude oil that has some idiosyncrasies to it, but every crude oil has some idiosyncrasies to it,” says Jim Ford, senior vice president of operations for AmSpec and member of Sustainable Power’s board of directors. “I think it has great potential and it could be the answer to the [energy] problems we’re having in the U.S. and elsewhere in the world.”
The secret of the Rivera Process is reliant on a particular nano bacterium catalyst that promotes a chemical reaction to transform the biomass waste feedstocks into a syngas where it travels through the reactors’ elongated chrome alloy tubes that allow for expansion due to high heat. The process reacts in a vacuum in an ambient temperature less than 800 degrees Fahrenheit. As opposed to conventional pyrolysis methods, Sustainable Power’s BG-100 and diesel blendstocks contain less than 1 percent water content because the oxygen molecules remain intact so the finished product is naturally oxygenated. The entire process takes a little more than eight minutes, regardless of the amount of feedstock introduced largely due to Rivera’s surreptitious, yet highly effective catalyst.
“I can give you or anyone the blueprints of my reactors and my building structure, but it means nothing without my catalyst,” he says. “The Oak Ridge National Laboratory in Tennessee, the research arm of the U.S. DOE, and the site where the atomic bomb was developed, has been trying to break my catalyst now for the last 10 years.”
With the help of its on-site contractor Blue Harbor Energy, Sustainable Power’s Baytown facility is rapidly becoming energy independent. The company is expanding its production capacity from 2.4 MMgy to 8.7 MMgy, including the addition of a 90,000-foot rail loop to export the finished product and import feedstock and supplies. In addition to producing marketable biocrude oil, Sustainable Power produces other salable byproducts such as an effective 7-3-7 fertilizer, mineral water used in the production process, internal use and production of electricity and a clean-burning renewable natural gas. The company intends to construct a 500 megawatt power plant on-site and plans to sell electricity and renewable natural gas to local utility grids, which will enable it to buy and sell carbon credits.
In August 2007, AmSpec put 20 pounds of crushed soybeans into Sustainable Power’s reactor and it yielded 10.69 pounds of liquid oil, 3.77 pounds of gas and 5.54 pounds of 7-3-7 fertilizer. Because the soybeans were in 60-pound bags, AmSpec multiplied the results three times, and produced 43.38 pounds of fuel and 16.62 pounds of fertilizer. With an average fuel weight of 7.5 pounds per gallon, Sustainable Power’s process yields about 5.7 gallons per bushel.
“In any refinery there is going to have to be a lot more research done on [biocrude oil], but it’s also going to have to be treated as a crude oil, I think,. in order to get the full yield of everything,” Ford says.
Looking Ahead
On the domestic front, Sustainable Power is involved in a joint venture project with Farmers Sustainable Energy International to utilize its proprietary technology in Quincy, Ill., to convert cellulosic and noncellulosic feedstocks into biocrude oil, BG-100 and organic fertilizer.
“We’ve got a mini reactor from [Rivera] that we can take and test various feedstocks based on different locations,” says Scott Hoerr, president of FSEI and member of Sustainable Power’s board of directors. Hoerr is also a founding member of Missouri’s first farmer-owned ethanol plant, Northeast Missouri Grain Processors. “There are a lot of ways to approach and attack this and there’s more that we still don’t know about this process, but what we do know is pretty exciting.”
In April, to promote business growth internationally, Sustainable Power established a Central American subsidiary, Sustainable Power Corp. Central America Guatemala S.A. Because Sustainable Power’s reactors are modular and transportable, the company is initiating a campaign to deploy similar biomass reactor projects in Central America to displace imported oil. In May, the company qualified for approximately €4 billion ($6.4 billion) from the World Bank to build 400 bioreactors on 6,250 acres of land in Guatemala, where it will have the capacity to produce 30 million gallons of biocrude oil per day and seven gigawatts of electricity, which will be used by the seven-country Central American Parliament or Parlacen. In May, Sustainable Power formed a strategic alliance with L.Solé, a Spanish-based engineering, procurement and contracting firm, to assist in its Guatemalan venture and aid in the expansion of its Baytown facility.
Parlacen President Julio Gonzalez Gamarra endorsed Sustainable Power’s proprietary technology when he attended a public demonstration held in Baytown in April. Gamarra also became a member of the company’s board of directors in March to help facilitate the company’s Central American endeavors. Sustainable Power is also involved in projects in Malaysia and Haiti.
Sustainable Power Corp. has finalized a strategic alliance with Pemco Energy AS, a Norwegian-based trading and industrial group that manufactures, distributes and sells oil and chemical-based products.
Teaming up with Pemco, Sustainable Power (shares are traded under the symbol SSTP) has created a European subsidiary, SSTP Europe, which will be the exclusive representative for Sustainable Power throughout Europe. The joint venture intends to install, own and operate facilities, produce and market green biofuels, including the use of biofuel for power generation, and generate green certificates.
Pemco will be responsible for the organization and set up, enabling SSTP Europe to operate all the plants across Europe and establish long-term power purchase contracts with energy companies in the region. Pemco, in close cooperation with Sustainable Power, will secure long-term agreements with low-cost sustainable feedstock producers from major land areas in Eastern Europe, with intentions of networking to South America, Australia and Africa.
Additionally, Pemco has entered into a stock subscription agreement for 50 million restricted shares of Sustainable Power stock for $2 million. Pemco has agreed to contribute $6 million to the buildup of SSTP Europe. “The key personnel of Pemco have a long history of establishing successful international transactions,” Rivera says. “Collaborating with Pemco is a major milestone for SSTP. Pemco has the experience, personnel, financial resources and ‘green’ background to bring about the successful commercialization of SSTP across Europe.”
Because Sustainable Power’s biocrude oil can be readily distributed into the existing U.S. fuel supply network, the company has attracted interest from U.S.-based oil refiners such as Kinder Morgan and George E. Warren. Rivera hasn’t set a price for his biocrude oil, but he estimates that it could be sold in the U.S. market at a minimum of $42 per barrel. He is also willing to partner with U.S. and international ethanol and biodiesel companies looking to offset their operating costs and add another revenue stream.
“You’re seeing history in the making,” Rivera says. “We’re changing the face of energy. I’m not out to hurt the biodiesel or ethanol industry. I’m interested in wastes. I’m not interested in taking a mouthful of food away from anybody or any animal.”
Bryan Sims is a Biomass Magazine staff writer. Reach him at bsims@bbiinternational.com or (701) 746-4950.
http://www.biomassmagazine.com/article.jsp?article_id=1835&q=&page=all
.
Join the InvestorsHub Community
Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.