InvestorsHub Logo
Followers 1
Posts 683
Boards Moderated 0
Alias Born 07/09/2003

Re: chiggah post# 75881

Sunday, 02/03/2008 3:52:37 PM

Sunday, February 03, 2008 3:52:37 PM

Post# of 82595
An excerpt;

Reputations, money and perhaps the foundations of life ride on the 16S rRNA dispute. Resolving it may determine who gets money to find the next great biological kingdom.

NANOBACTERIAL INFECTION
How relevant is the outcome for human welfare? In 2004, researchers reported finding nanobacteria in everything from heart disease to cancer and kidney stones. Medical researchers reported to the American Heart Association's Scientific Sessions 2004 that a test for nanobacteria is an accurate predictor of heart disease risk. But the work that these researchers say may already have saved lives has been ridiculed by critics who claim that such nanobes don't exist, which in turn has made funding for basic research hard to get.

Who is right? One well-respected astrobiologist observer qualified the struggle this way: "Unless we declare [the nano-organism scientists] incompetent, then the info they have gathered is rather compelling that something interesting is going on."

That's why a few intrepid investors have plopped US$7 million and counting into a Tampa biotech start-up devoted exclusively to Ciftcioglu and Kajander's discoveries about the calcifying particle. For the big pharmaceuticals companies that's pocket change, but for these entrepreneurs it's a pocketful of faith that's been keeping them on edge for years. And it's starting to show some results, as published research from NASA, Mayo and various universities indicates. Moreover, despite its relative financial insignificance, this venture may end up wagging the dog due to a long-overdue paradigm shift in, of all things, the space program.

After decades of resistance, NASA—provoked by successful upstart private projects such as the X Prize, which led to the first private foray into space—is now collaborating with fledgling companies, instead of just corporate behemoths, on intractable problems: in this case, why perfectly healthy astronauts come down with kidney and other calcifying disorders. The result: in March 2005, NASA's Johnson Space Center put the finishing touches on a tightly secured lab aimed at decoding nanobacteria found at the core of kidney stones. After some serious growing pains, the lab is finally beginning to look into what Ciftcioglu and Kajander began examining so many years ago: the genetic content of nanobacteria. Meanwhile, Ciftcioglu and others have published results showing that nanobacteria multiply five times faster in weightlessness than in Earth gravity,5 which may explain why calcification shows up so suddenly in space.

But while researchers argue over what this nanobacterium is and how it multiplies, doctors are finding that, when they treat it with a medical cocktail, their patients improve.
Nor is it unusual that doctors are succeeding before science figures out why. Antibiotics were used successfully against bacteria long before scientists deciphered DNA. Doctors stopped infecting patients by washing their hands long before they were able to identify all the viruses and bacteria that they inadvertently transported from patient to patient.

Most recently, a vaccine that prevents cervical cancer has been put on the market. It apparently works by targeting the human papilloma virus. Problem is, researchers can't show exactly how the virus causes cancer; they can only show that when it is stopped, the cancer doesn't occur. But that hasn't prevented the drug from being patented and put on the market. The history of medicine is full of such examples where patients improve with treatments whose mechanisms aren't fully understood at the start.
The idea that infection could be at the heart of chronic illness is intriguing because it has been around for more than a century but only now is regaining favour due to discoveries of, for example, a vaccine that prevents cervical cancer (as mentioned above). The resulting debates over infection in chronic disease have a novel twist because they are driven by new diagnostic technologies that give researchers the molecular accuracy required to confirm older theories about infection. On one hand, clinical results suggest antibiotics alone do not prevent the rate of heart attacks among coronary patients. On the other, discoveries that infection is responsible for most stomach ulcers and some cancers support the long-held idea that the same might be true in heart disease, if only science could find the right infection and get rid of it.

Some say that nanobacteria may be one such infection. Yet scientists' inability to fully explain the genetics of nanobacteria is being used by high-ranking medical authorities as an excuse to ignore the pathogen and its treatment. This is especially perplexing because scientists involved in the discoveries work at some of the highest level institutions in America, including NASA, Mayo Clinic, Cleveland Clinic, Washington Hospital Center and many others, and are not only respected in their field but are also award winners. Other centres of excellence internationally, such as University Hospital in Vienna, have also isolated the pathogen and observed it in diseases such as ovarian cancer.

For decades, scientists have shown that disease can be caused by contaminants that are not "alive" and cannot replicate on their own. Environmental toxins, many viruses and, most recently, particles known as prions have all been shown as players in disease processes, although they cannot self-replicate.
So it seems unusual that nanobacteria would be discounted just because no one has yet shown how they multiply. Which takes us to the question of where nanobacteria might come from.