InvestorsHub Logo
Followers 5
Posts 2753
Boards Moderated 0
Alias Born 03/21/2021

Re: None

Tuesday, 07/30/2024 4:27:09 PM

Tuesday, July 30, 2024 4:27:09 PM

Post# of 12607
Super cooled problem solved. Like I said. Ionq has made a ton of adjustments lately.

Atoms make better quantum computers.
At its core, a quantum computer is a machine that uses a quantum system, like the spin of an electron, to do a very specific type of math.

This math takes advantage of the uniquely complex behavior of quantum systems, namely entanglement and superposition, to perform calculations that are fundamentally unlike the calculations ordinary computers based on classical physics can perform. Once quantum computers are powerful and stable enough, their unique computational power will solve world-changing problems that are beyond the capabilities of even the largest supercomputers.

Many quantum hardware developers use "synthetic" quantum systems for their quantum bits (qubits for short), like loops of supercooled superconducting wire, intentional imperfections in crystalline silicon, or other designs carefully coaxed to behave as quantum systems. At IonQ, we take a different approach. We use a naturally occurring quantum system: individual atoms.

These atoms are the heart of our quantum processing units. We trap them in 3D space, and then use lasers to do everything from initial preparation to final readout. It requires counterintuitive physics, precision optical and mechanical engineering, and fine-grained firmware control over a variety of components, but the superior results speak for themselves.

Read on to understand exactly how our trapped ion quantum cores work, and why they’re the most promising platform for quantum computing in development today.
Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent NVDA News