InvestorsHub Logo
Followers 245
Posts 55847
Boards Moderated 12
Alias Born 04/12/2001

Re: scion post# 47002

Tuesday, 07/13/2021 5:19:44 AM

Tuesday, July 13, 2021 5:19:44 AM

Post# of 48181
Microplastic Myths

https://plasticsparadox.com/microplastic-myths/

Introduction

Microplastics have attracted a huge amount of attention. People tend to be afraid of the unknown and especially so about things that they cannot see with their own eyes. As a scientist, I decided to review all the science I could find on the topic to see whether or not we have genuine cause for concern. That meant reading a huge amount of material, not just skimming through but also checking how the science was done, to make sure that it was professionally conducted. What I found shocked me…


What are microplastics?

Microplastics are defined as plastic fragments of 5mm or less across. They first came to the public’s attention when articles started showing up about the polyethylene microspheres used in some facial scrubs as a mild exfoliant. There was a huge uproar, as this was perceived as a major problem and now the PE spheres are no longer used. A recent report gives an excellent overview (see Primary Microplastics in the Oceans- a Global Evaluation of Sources IUCN 2017). The report says that the global release of primary microplastics in the oceans is estimated to be about 1.5 Mtons/year.

So, we know that microplastics are real and the quantities are enough to be concerned about. I looked for the data and it turns out that just 2% of the plastic particles in the sea were from in facial scrubs. I was surprised at how low the amount was, in light of the huge amount of attention the topic received. If not facial scrubs, what is responsible for the microplastics in our oceans?



Microplastics are abundant – but are they causing harm?

For a substance to present a danger, it has to be toxic and there has to be an exposure route. For example, a bottle of poison on the moon would not be a threat to people on Earth so there would be no danger. In that example, there is toxicity but no exposure. Conversely, we may be exposed to something but if it turns out to be harmless, then there is no cause for concern.

I looked at many studies and we know for sure that birds and fish do eat plastic. Microplastics can be found in their digestive system.

“Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual” and “Most were polyethylene (52.0%) or polypropylene (43.3%).”

Source: Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters

So, the exposure component is there. What about the toxicity aspect? Are these plastic particles harmful to the marine wildlife?

It is interesting to see that PE and PP are the main plastics. It should not be too surprising, as they are the two most commonly used plastics and they both float on water, making them more visible and more likely to be ingested by fish. PE and PP are also two very safe plastics that we use all the time to package food. PE is used for sealable food bags in the kitchen and PP is used for sealable food containers. Both have been used safely for several decades.

The press has drawn the public’s attention to studies claiming that plastics leach toxins, but when we look at those studies, it turns out that the plastic was shown to be safe and only released toxins after the plastic was intentionally soaked in toxins by the experimenters. These studies are not only misleading but irresponsible. We could soak more or less anything in poison and then show that it released some poison once placed in clean water. Interestingly, other workers showed that plastics absorb toxins from water and hold them tightly so that even when ingested by fish, they are able to protect the fish. Have you ever seen a headline highlighting those studies? I have not. Why is that?

So, it is a myth that microplastics are toxic. You can see details of the various studies in the myths tab in the section below. To summarize, having read many studies, here is what they say:

* Several studies show that microplastics are non-toxic to marine life
* Some studies show that microplastic intentionally pre-soaked in poison are somewhat toxic – but so is any substance
* Some studies state that microplastics protect marine life by binding poisons from the ocean and preventing exposure
* Other studies claim microplastics cause harm but none of them are credible because they use the wrong type of plastic, they use the wrong shape of particle, they use 100-10 million times too much plastic and they use fluorescent colored plastic which is completely unrealistic



Conclusion – microplastics are not toxic

Careful consideration shows no credible evidence that microplastics are causing harm. Some of the data even points to a protective effect whereby the plastic particles absorb toxins in the sea and shield marine animals from exposure.

There is a shocking amount of bad science whereby the experiments were so poorly designed that they should never have been accepted for publication. I have refereed articles for major publishers and I would not have allowed many of the environmental papers to be released. I would encourage people to take the challenge of doing good quality research so that we can learn more about the facts and take appropriate action.

Specific scientific articles

I made a statement that much of the microplastics works is not credible. Having reviewed many studies, it is some of the worst “science” I have ever seen. Those are bold statements, so now I will explain why I made them by looking at several publications individually and explaining why the science is either invalid or, in some cases, fraudulent.

First comes this warning from scientists who point out that many of the studies are not done under realistic conditions.

Microplastic exposure studies should be environmentally realistic

R. Lenza, K. Endersa, and T. G. Nielsen, Proceedings of the National Academy of Sciences, 113(29), E4121 – E4122 . [201606615]. DOI: 10.1073/pnas.1606615113

The authors warn that:

“Experimental exposure concentrations tend to be between two to seven orders-of-magnitude higher than environmental levels.”

Meaning that many articles are using 100x and 10 million times more more plastic and toxin than are found in the environment. Dose is very important for toxicity. For example, breathing 20% oxygen keeps us alive where 100% oxygen is lethal. Therefore, they go one to say:

“Microplastic research is an emerging field, and there is a lot of misunderstanding and in some cases over- reaction or misinterpretation of results from MP science in the public. We therefore strongly suggest that future studies of MP impact on marine ecosystems should also include concentrations that have been documented in the environment to yield more realistic estimates of sublethal effects.”

Another article points out that the studies are usually done on the wrong kinds of plastic. Many studies are done on polystyrene when that is not at all common in the ocean. Polystyrene is just 1% of microplastic in the ocean so why focus on that? The reason is that polystyrene particles are easily obtainable making it convenient for the scientists to order them.

Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?

“Analysis of the available data revealed that 1) despite their widespread detection in field-based studies, polypropylene, polyester and polyamide particles were under-represented in laboratory studies; 2) fibres and fragments (800–1600 µm) are the most common form of MPs reported in animals collected from the field; 3) to date, most studies have been conducted on fish; knowledge is needed about the effects of MPs on other groups of organisms, especially invertebrates. Furthermore, there are significant mismatches between the types of MP most commonly found in the environment or reported in field studies and those used in laboratory experiments.”

They correctly noted that studies are done on the wrong plastics and on the wrong shapes. In the oceans fibers and fragments are found, whereas all the studies are on perfectly round particles.

Now let’s look at a couple of studies that make plastics out to be a problem…

Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish

The abstract for the article states:

“This work provides evidence that microbeads from personal care products are capable of transferring sorbed pollutants to fish that ingest them.”

Later, the article says:

“The bioavailability of PBDEs sorbed to microbeads that did accumulate in the fish is of concern, considering the large volume of MBs (and other microplastics) entering the aquatic environment and their largely unknown environmental fates. Implications for the food chain, including the human diet, from this very fine fraction of plastic debris demand further investigation.”

That sounds like it could be a problem, so I read the article in detail. First, they showed that polyethylene beads from facial wash had no effect on fish that ate them. Then they soaked the beads in known toxins so that they beads absorbed the poison. They fed the toxin loaded beads to the fish and confirmed that a small proportion of the toxins was transferred to the fish.

What does this mean? Let’s picture what would happen in the ocean. The PE beads (proven to be harmless alone), will absorb toxic chemicals. That means less toxic chemicals in the water that the fish are in. That’s great news. What happens if the fish eat the plastic beads? Just 0-12% of the toxin is released by the beads because the toxic chemicals prefer to stay inside the beads. That’s more good news! The plastic beads are purifying the water and protecting the fish. The title of the article could have been “Microplastics miraculously effective at sequestering toxins and purifying seawater”.

I hope this shows you how desperate the environmentalists are to do studies that are unrealistic, improperly performed and incorrectly interpreted. It’s shocking.

In fact, at least two studies have proven that microplastics are very effective at binding toxins and protecting marine wildlife (polypropylene study, nylon study). Yet another study directly tested the hypothesis that microplastics (MP) would lead to accumulation of toxins in fish. What they found instead was:

“Contaminant concentrations in the muscle tissue were unrelated to the MP levels in fish, suggesting a lack of direct links between the levels of HOCs and MP ingestion. Thus, despite their ubiquity, MP are unlikely to have a measurable impact on food intake or the total body burden of hydrophobic contaminants in Baltic herring.”


Source: Hydrophobic organic contaminants are not linked to microplastic uptake in Baltic Sea herring, M. Ogonowski, V. Wenman, S. Danielsson and E. Gorokhova

Oyster reproduction is affected by exposure to polystyrene microplastics

Sussarellu et al., PNAS March 1, 113 (9) 2430-2435 (2016)

The authors state:

“This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.”

I then noticed this:

“analyses on extracted micro-PS particles detected bibenzyl and 1(2H)naphthalenone,3,4,dihydro4phenyl with >90% correspondences”

This means that the PS spheres they used contained toxins not found in household polystyrene. The beads used contain added surfactant and are cross-linked with divinyl benzene, which explains the toxic extractibles found (see manufacturer’s description).

In conclusion, this experiment cannot be trusted because it was not performed properly. They used polystyrene beads when only 1% of plastics in the ocean is polystyrene. They also used a special type of polystyrene that contains toxic chemicals not found in normal polystyrene.


Next is a study on worms that feed on sediment.

“Biouptake in worms was lower by 76% when PCBs were associated with polypropylene compared to sediment. The presence of microplastics in sediments had an overall impact of reducing bioavailability and transfer of HOCs to sediment-ingesting organisms. Since the vast majority of sediment and suspended particles in the environment are natural organic and inorganic materials, pollutant transfer through particle ingestion will be dominated by these particles and not microplastics. Therefore, these results support the conclusion that in most cases the transfer of organic pollutants to aquatic organisms from microplastic in the diet is likely a small contribution compared to other natural pathways of exposure.”

Differential bioavailability of polychlorinated biphenyls associated with environmental particles: Microplastic in comparison to wood, coal and biochar

Another study states the following about microplastics (MP):

“Thus, despite their ubiquity, MP are unlikely to have a measurable impact on food intake or the total body burden of hydrophobic contaminants in Baltic herring.”

Hydrophobic organic contaminants are not linked to microplastic uptake in Baltic Sea herring

Both polyethylene, and polypropylene, by far the most abundant microplastics in the ocean, have been proven to absorb toxins from water and sequester them, thereby protecting marine wildlife. Nylon has been shown to do the same, the PA (polyamide) particles were themselves harmless and reduced the amount of BPA in the water:

“The PA particles themselves did not induce negative effects, while the effects of BPA alone followed a typical dose-dependent manner. Sorption of BPA to PA particles prior to exposure led to a reduction of BPA in the aqueous phase.”

Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part I: Effects of Bisphenol A on Freshwater Zooplankton Are Lower in Presence of Polyamide Particles

For the next article, I did a search of the title to find a link to share here and Google revealed this hit, which was quite a surprise:

“We wish to report a strong suspicion of research misconduct in the following study by researchers at Uppsala University, published in the journal Science on June 3 2016”

Lönnstedt OM and Eklöv P (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352: 1213-1216. doi: 10.1126/science.aad8828

“Regarding point #4 above, we have evidence including witness reports, photos of the experimental setup, and email correspondences that the experiments reported in the paper were not performed as described by the authors. To be clear, there is a significant mismatch between what is described in the paper and how the experiments were actually performed. Examples include:

* The exposure times of eggs and larvae reported in the paper are longer than the actual duration of the experiment at the Ar research station in Gotland, Sweden.
* The actual number of replicate tanks and fish is lower than what is stated in the paper.
* Aquaria maintenance and monitoring were not conducted as described in the paper.

For these and other reasons, we strongly suspect that this study constitutes a case of research misconduct.”

You read that correctly. Apparently, these researchers were so desperate to make plastics look bad that they falsified their results. After an investigation, the article was retracted.

I have many more articles that I will be reading and commenting on here.

There is one meta-analysis on this topic but unfortunately, they did not properly screen the articles they included. I checked with the lead author and she admitted that even the studies where they intentionally soaked the plastic in toxins were included. I hope that they do a new meta-analysis only on articles that have been conducted properly. Even with the inclusion of those suspect studies, the meta-analysis showed surprisingly few adverse effects.

Microplastics in fisheries and aquaculture – Status of knowledge on their occurrence and implications for aquatic organisms and food safety

One may wonder whether creatures containing plastic could be eaten by people and whether any harm would result. I found one detailed report on that topic and they concluded:

“As an example, a worst case estimate of exposure to microplastics after consumption of a portion of mussels (225 g) would be 7 µg of plastics. Based on this estimate and considering the highest concentrations of additives or contaminants reported in microplastics, and assuming complete release from microplastics, the microplastics will have a negligible effect on the total dietary exposure to PBTs and plastic additives. These contaminants are estimated to contribute only <0.1 percent of the total dietary exposure to these compounds.”

I have not seen a single credible article showing microplastics to be toxic. When reading such studies we should ignore studies based on polystyrene, ignore studies using 100-10 million fold more particles than are actually present in the ocean and ignore studies where the plastic used was intentionally loaded with poison. Realistic, professionally designed experiments are needed if we are to draw meaningful conclusions and so far those realistic studies show no harmful effects.
....
MUCH MORE
https://plasticsparadox.com/microplastic-myths/

Join the InvestorsHub Community

Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.