InvestorsHub Logo
Followers 27
Posts 5124
Boards Moderated 0
Alias Born 01/27/2014

Re: None

Wednesday, 07/07/2021 8:38:18 AM

Wednesday, July 07, 2021 8:38:18 AM

Post# of 30373
Absolutely massive news : NEW YORK, July 7, 2021 /PRNewswire/ -- Seelos Therapeutics, Inc. (Nasdaq: SEEL), a clinical-stage biopharmaceutical company focused on the development of therapies for central nervous system disorders and rare diseases, today announced positive in vivo data demonstrating down-regulation of SNCA mRNA and protein-expression from a study of SLS-004 in an in-vivo rodent model utilizing CRISPR-dCas9 gene therapy technology. A single dose of SLS-004 produced a therapeutically desirable 27% reduction on SNCA mRNA and a 40% reduction in SNCA protein expression.

(PRNewsfoto/Seelos Therapeutics, Inc.)

Parkinson's disease (PD) is the second most common neurodegenerative disorder in the world and currently there is no effective treatment to prevent PD or to halt its progression. The SNCA gene has been implicated as a highly significant genetic risk factor for PD. In addition, accumulating evidence has suggested that elevated levels of alpha-synuclein (a-synuclein) are causative in the pathogenesis of PD. Patients with impaired regulation of the SNCA gene show as high as 200% expression of a-synuclein protein. A reduction of 25%-50% in SNCA mRNA and protein expression should be sufficient to restore normal physiological levels of SNCA.

"We are highly encouraged by these preliminary findings demonstrating downregulation of SNCA mRNA and SNCA protein expression in this in vivo model," said Raj Mehra Ph.D., Chairman and CEO of Seelos. "Overexpression of alpha-synuclein has been implicated as a highly significant risk factor for Parkinson's and the accumulation of this protein is a pathological hallmark of synucleinopathies for additional diseases such as dementia with Lewy bodies and multiple system atrophy."

"The effect of SNCA downregulation achieved with our innovative CRISPR-dCas9 platform technology in this in vivo animal study is very promising and we plan to further validate the safety and efficacy of our lentivirus-based epigenome-editing approach in a full-range preclinical study under our Sponsored Research Agreement with Seelos, with the aim of reversing the Parkinson's disease-related pathology," said Boris Kantor, Ph.D., Associate Research Professor, Duke University School of Medicine.

Ornit Chiba-Falek, Division Chief, Translational Brain Sciences at Duke added, "With Seelos, we've moved forward with our innovative CRISPR-dCas9 based gene therapy approach onto in vivo studies. This pilot experiment in mice showed promising results with an effect on SNCA reduction within the presumed target therapeutic window. We are continuing the preclinical studies to further the development of epigenome-editing targeting SNCA towards precision medicine for Parkinson's disease."

Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent SEEL News