InvestorsHub Logo
Followers 84
Posts 32220
Boards Moderated 85
Alias Born 03/22/2005

Re: None

Sunday, 04/21/2019 10:11:04 AM

Sunday, April 21, 2019 10:11:04 AM

Post# of 361
>>> Lightwave Logic, Inc.


https://csimarket.com/stocks/LWLG-Business-Description.html


Business Description

We were incorporated under the laws of the State of Nevada on June 24, 1997 and in 2004 we acquired PSI-TEC Corp., and in 2006 we merged with PSI-TEC Corp. PSI-TEC Corp. was originally founded by Dr. Frederick J. Goetz in 1991 and incorporated under the laws of the State of Delaware on September 12, 1995. In 2008 we changed our name to Lightwave Logic, Inc.

Lightwave Logic, Inc. is a development stage company whose P2ICTM technology addresses advanced telecommunication, data communications, and data center markets utilizing its advanced organic electro-optic polymer systems. The Company currently has two business segments to support its development activities, its materials development segment located in Newark, Delaware, and its photonic device design and development segment located in Longmont, Colorado.

The Company designs and synthesizes organic chromophores for use in its own proprietary electro-optic polymer systems and photonic device designs. A polymer system is not solely a material, but also encompasses various technical enhancements necessary for its implementation. These include host polymers, poling methodologies, and molecular spacer systems that are customized to achieve specific optical properties. Our organic electro-optic polymer systems compounds are mixed into solution form that allows for thin film application. Our proprietary electro-optic polymers are designed at the molecular level for potentially superior performance, stability and cost-efficiency. We believe they have the potential to replace more expensive, lower-performance materials and devices used in fiber-optic ground, wireless and satellite communication networks.

Our patented and patent pending molecular architectures are based on a well-understood chemical and quantum mechanical occurrence known as aromaticity. Aromaticity provides a high degree of molecular stability that enables our core molecular structures to maintain stability under a broad range of polymerization conditions that otherwise appear to affect other current polymer molecular designs.

We expect our patented and patent-pending optical materials along with trade secrets and licensed materials, to be the core of and the enabling technology for future generations of optical devices, modules, sub-systems and systems that we will develop or potentially out-license to electro-optic device manufacturers. The Company contemplates future applications that may address the needs of semiconductor companies, aerospace companies and government agencies.

Lightwave Logic, Inc. is developing next generation proprietary photonic devices that are based on our advanced electro-optical polymer material systems. Current legacy technology is based on inorganic crystalline materials, which has allowed for the proliferation of data over fiber optic cables. However, there are inherent molecular deficiencies that have prevented this technology from scaling down in price and up in functionality. This is primarily due to a closed valence structure that does not allow for the molecular improvements. The valence or valency of an element is a measure of its combining power with other atoms when it forms chemical compounds or molecules. Also, the physical properties of a crystal do not allow for its implementation into highly miniaturize slot structures that are in simple terms the pathways that light travels through in the device.

Organic polymer materials on the other hand, have free electrons that allow for limitless potential to combine with other molecular structures, which allows for multiple options and combinations to improving performance characteristics. Importantly, because they can be applied to optical structures in thin-film liquid form, it is possible to imbue electro-optic ability to highly miniaturized slot structures. Organic polymer materials are also vastly cheaper to manufacture in comparison to growing exotic crystals that are prone to contamination and further must be sliced into thin wafers. Our Company believes that the combination of less expensive manufacturing cost, ease of application, and better scalability, together with a lower cost of ownership due to marked less heat dissipation (requiring less cooling), will create enormous demand for our products.

<<<




Join the InvestorsHub Community

Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.