InvestorsHub Logo
Followers 71
Posts 11465
Boards Moderated 0
Alias Born 12/25/2009

Re: chmcnfunds post# 5

Monday, 01/08/2018 10:57:51 AM

Monday, January 08, 2018 10:57:51 AM

Post# of 48
CRISPR hits a snag: Our immune systems may attack the treatment

By ANDREW JOSEPH @DrewQJoseph JANUARY 8, 2018

The CRISPR-Cas9 gene editing complex from Streptococcus pyogenes.

A new paper points to a previously unknown hurdle for scientists racing to develop therapies using the revolutionary genome-editing tool CRISPR-Cas9: the human immune system.

In a study posted Friday on the preprint site bioRxiv, researchers reported that many people have existing immune proteins and cells primed to target the Cas9 proteins included in CRISPR complexes. That means those patients might be immune to CRISPR-based therapies or vulnerable to dangerous side effects — the latter being especially concerning as CRISPR treatments move closer to clinical trials.

But researchers not involved with the study said its findings, if substantiated, could be worked around. (Papers are posted to bioRxiv before being peer-reviewed.) Many of the first planned CRISPR clinical trials, for example, involve removing cells from patients, fixing their DNA, and then returning them to patients. In that case, it’s possible that there will be few or no CRISPR proteins remaining for the immune system to detect.

They also noted that scientists are already studying other types of CRISPR that use different proteins, which could stave off the immune responses.

“At the end of the day, I’m not that concerned about it,” said Daniel Anderson of the Massachusetts Institute of Technology, who has studied the delivery of CRISPR therapies and who was not involved with the new study. “But we want to do some experiments to learn more.”

Related Story: Using CRISPR, scientists efficiently edit genome of viable human embryos
The new study should not put the brakes on developing CRISPR therapies, agreed Dr. Matthew Porteus of Stanford, a senior author of the paper and who is himself at work on a CRISPR-based therapy for sickle cell disease. But he said he and his colleagues investigated the immune issues because he felt they were being overlooked as the excitement around CRISPR grew.

“Like any new technology, you want to identify potential problems and engineer solutions for them,” Porteus said. “And I think that’s where we’re at. This is an issue that should be addressed.”

(Porteus and Anderson are both scientific founders of CRISPR Therapeutics, one of the most prominent companies exploring CRISPR-based therapies.)

Immune survey
CRISPR has gained fame in recent years as researchers have deployed it to correct an array of disease-causing mutations in cells in the lab and in animal models, with hopes that the same results can be achieved in people. There are different types of CRISPR systems, but the most well known is dubbed CRISPR-Cas9; it includes Cas9 proteins that cut DNA so that it can be edited. Cas9 proteins come from bacteria.

For the study, the researchers decided to check for immune signals against two of the most common types of Cas9 proteins used, those from the bacteria S. aureus (called SaCas9) and those from S. pyogenes (called SpCas9). In their samples of blood from 22 newborns and 12 adults, the scientists found that 79 percent of donors had immune proteins, called antibodies, against SaCas9, and 65 percent had antibodies against SpCas9.

The researchers then searched for immune cells called T cells. They discovered that about half of the donors had T cells that specifically targeted SaCas9, so that if the immune cells detected that protein on the surface of a cell, they would rally a response to try to destroy it. The researchers did not find anti-SpCas9 T cells, though they said the cells might still have been present.

It’s not surprising so many of the donors had antibodies and T cells against the Cas9 proteins, experts said. That simply means that those people had been exposed to the bacteria containing the proteins in the past, and other studies have found that, at any given time, 40 percent of people are “colonized” by S. aureus and 20 percent of schoolchildren have S. pyogenes. The bacteria only sometimes cause disease.
_______________________________________________
https://www.statnews.com/2018/01/08/immunity-crispr-cas9/

NTLA
Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent NTLA News