InvestorsHub Logo
Followers 3
Posts 607
Boards Moderated 0
Alias Born 06/07/2010

Re: None

Thursday, 10/09/2014 11:36:37 PM

Thursday, October 09, 2014 11:36:37 PM

Post# of 1060
10/08/2014 | 02:50pm US/Eastern--Pacific Biosciences of California : Patent Issued for Modular Nucleotide Compositions and Uses Therefor
By a News Reporter-Staff News Editor at Biotech Business Week -- According to news reporting originating from Alexandria, Virginia, by NewsRx journalists, a patent by the inventors Korlach, Jonas (Newark, CA); Wegener, Jeffrey (Cupertino, CA), filed on July 19, 2012, was published online on September 30, 2014 (see also Biotechnology Companies).

The assignee for this patent, patent number 8846881, is Pacific Biosciences of California, Inc. (Menlo Park, CA).

Reporters obtained the following quote from the background information supplied by the inventors: "A wide variety of nucleotide compositions and nucleotide analog compositions have been provided for use in a variety of different applications. In some cases, these compositions function as analytical reagents for the analysis of biological processes, e.g., in nucleic acid sequencing reactions. In other cases, these compositions function as pharmaceutically active substances for the treatment of disease. In still other aspects, these compositions form building blocks for other commercial applications. In a number of situations, a basic nucleotide, e.g., a nucleoside triphosphate, is coupled to an additional functional group in order to provide an additional or a different function to that compound. For example, in one of the more ubiquitous embodiments, detectable label groups, such as fluorescent dyes, radiolabels, semiconductor nanocrystals, or the like, are coupled to the nucleotide to render the nucleotide more easily detectable, e.g., through a fluorescent microscope. These labels may be coupled to persistent components of the nucleotide, i.e., the nucleobase, that remains even following polymerization with other nucleotides, or they may be coupled through the transient portions, e.g., a gamma phosphate group that may be removed upon polymerization. In other cases, functional groups may be coupled to nucleotides or nucleotide analogs in order to provide therapeutic activity, e.g., in interrupting viral replication, or the like.

"Despite the widespread use of functionally tagged nucleotides, it would be desirable to provide for a modular nucleotide composition that allows simple and flexible functionalization of nucleotides for use in a variety of different applications. The present invention meets these and other needs."

In addition to obtaining background information on this patent, NewsRx editors also obtained the inventors' summary information for this patent: "The invention generally provides modular nucleotide compositions and methods of making and using such compositions that employ a cassette approach to addition of functional groups to nucleotide analogs.

"In certain aspects, the present invention provides a composition having a nucleoside polyphosphate coupled to a functional group through a phosphate group by a non-covalent linkage. In certain embodiments, the functional group is coupled to the nucleoside polyphosphate through a phosphate group other than the alpha phosphate group, e.g., the beta, gamma, or other terminal phosphate group. In preferred embodiments, the functional group comprises a detectable label, such as a fluorescent label. In certain embodiments, the functional group is a 'payload' delivered by the composition, e.g., a pharmaceutical compound or diagnostic agent. In certain embodiments, the functional group comprises a particle, e.g., a magnetic particle, a fluorescent semiconductor particle, a metal particle, and/or a polymeric particle.

"The non-covalent linkage preferably comprises one or more of an affinity linkage, biotin, avidin (or biotin-binding subunit thereof), streptavidin (or biotin-binding subunit thereof), neutravidin (or biotin-binding subunit thereof), an antibody or fraction thereof, a polynucleotide, a nucleic acid binding protein, or a combination thereof. In certain embodiments, the non-covalent linkage is a polyvalent non-covalent linkage. For example, a polyvalent non-covalent linkage may couple multiple functional groups to a single nucleoside polyphosphate, or may couple multiple nucleoside polyphosphates to a single functional group, of may couple multiple nucleoside polyphosphates to multiple functional groups. The multiple nucleotide polyphosphates and/or multiple functional groups can be the same or different from one another. For example, multiple functional groups can comprise spectrally distinguishable fluorescent labels or moieties with different charges.

"In certain embodiments, the invention provides compositions having multiple non-covalent linkages. For example, in some compositions of the invention multiple non-covalent linkages couple a single nucleoside polyphosphate to multiple functional groups, and in other compositions of the invention multiple non-covalent linkages couple multiple single nucleoside polyphosphates to a single functional group.

"In other aspects, the invention provides compositions having the structure BSPLF, where B comprises a nucleobases moiety, S comprises a sugar, acyclic, or carbocyclic moiety, P comprises a polyphosphate group, L comprises a non-covalent linkage component, and F comprises a desired functional group. In certain preferred embodiments, L comprises an affinity binding pair.

"In further aspects, the invention provides methods for preparing nucleotide compositions that include providing a nucleoside polyphosphate having a first non-covalent linking group coupled to a phosphate group; providing a functional group having a second non-covalent linking group coupled thereto, the second non-covalent linking group being capable of non-covalently binding to the first non-covalent linking group; and linking the nucleoside polyphosphate to the functional moiety through the first and second non-covalent linking groups. Preferably, the phosphate group through which the non-covalent linking group is coupled to the nucleoside polyphosphate is hot the alpha phosphate group of the nucleoside polyphosphate. In preferred embodiments, the first and second non-covalent linking groups form an affinity binding pair, e.g., an epitope pair, GST/glutathione pair, RNA/aptamer pair, or an associative protein or polypeptide pair. For example, in some embodiments the first non-covalent linking group is complementary to the second non-covalent linking group. In other embodiments, one of the non-covalent linking groups is an antibody and the other is an antigen. In yet further embodiments, one of the non-covalent linking groups is a nucleic acid and the other is a nucleic acid binding protein.

"In yet further aspects; the invention provides systems for providing functionalized nucleotide compositions comprising: a first source of nucleoside polyphosphates having at least a first linkage component attached to a phosphate group thereon; a second source of functional groups having a second linkage component coupled thereto, wherein the first and second linkage components comprise an affinity binding pair. The system can further include a reagent mixing system for transferring nucleoside polyphosphate from the first source and functional; groups from the second source to a mixing chamber to combine the nucleoside polyphosphate and the functional groups under conditions whereby the first and second linking components form a non-covalent linkage, thereby providing functionalized nucleotide compositions. The system can further include a dispensing the functionalized nucleotide compositions into a reaction mixture. In preferred embodiments, the first source comprises at least two different nucleoside polyphosphates having the first linkage component attached to a phosphate group thereon; and/or the second source comprises at least two different functional groups having the second linkage component coupled thereto. The system is capable of providing multiple different functionalized nucleotide compositions, each of which comprises the first and second linkage component and a different combination of nucleoside polyphosphate and functional group. For example, each may comprise the same avidin/biotin pair, but a different combination of nucleoside polyphosphate and detectable label."

For more information, see this patent: Korlach, Jonas; Wegener, Jeffrey. Modular Nucleotide Compositions and Uses Therefor. U.S. Patent Number 8846881, filed July 19, 2012, and published online on September 30, 2014. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8846881.PN.&OS=PN/8846881RS=PN/8846881

Keywords for this news article include: Anions, Chemistry, Electronics, Electrolytes, Semiconductor, Polyphosphates, Phosphoric Acids, Inorganic Chemicals, Phosphorus Compounds, Biotechnology Companies, Pacific Biosciences of California Inc..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2014, NewsRx LLC

(c) 2014 NewsRx LLC

http://www.4-traders.com/PACIFIC-BIOSCIENCES-OF-CA-6797675/news/Pacific-Biosciences-of-California--Patent-Issued-for-Modular-Nucleotide-Compositions-and-Uses-There-19159888/
Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent PACB News