InvestorsHub Logo
Followers 67
Posts 826
Boards Moderated 0
Alias Born 03/19/2009

Re: None

Thursday, 08/28/2014 5:07:02 AM

Thursday, August 28, 2014 5:07:02 AM

Post# of 2874
VODG cells/media...Cerebral Ischemia research.....

Pete Shuster made a blog post yesterday regarding the use of Vitro Biopharma's human mesenchymal stem cells and MSC-GRO in recent Cerebral Ischemia animal research at the University of Illinois College of Medicine.

Excerpt from the blog post.....

UCB Derived hMSC-MSCGro™ Media-The Wow Factor!

Neuromics-Vitro Biopharma Cells and Media Used to Treat Cerebral Ischemia

I have frequently posted successful outcomes with our Umbilical Cord Blood Derived Human Mesenchymal Stem Cells and MSCGro Expansion Media. These solutions have been tested head to head with other cell and media options and proven superior in cell behavior, doubling time and total number of passages. Competitive testing, until now, was done in culture.

I am pleased to present a study where our cells and media were selected for the the in vivo treatment of Cerebral Ischemia in Rats. This is a key part of building the foundation for human clinical trials
.......

......This provides an in-depth understanding of the molecular mechanisms underlying the neuroprotective effects of mesenchymal stem cells derived from human umbilical cord blood in a rat model of transient focal cerebral ischemia. The study clearly demonstrates the potential of hUCBSCs to regulate various molecules responsible for cell death after transient focal cerebral ischemia followed by reperfusion.


http://neuromics.blogspot.com/2014/08/ucb-derived-hmsc-mscgro-media-wow-factor.html

Abstract from the published research......

Evidence suggests that apoptosis contributes significantly to cell death after cerebral ischemia. Our recent studies that utilized human umbilical cord blood-derived mesenchymal stem cells (hUCBSCs) demonstrated the potential of hUCBSCs to inhibit neuronal apoptosis in a rat model of CNS injury. Therefore, we hypothesize that intravenous administration of hUCBSCs after focal cerebral ischemia would reduce brain damage by inhibiting apoptosis and downregulating the upregulated apoptotic pathway molecules. Male Sprague-Dawley rats were obtained and randomly assigned to various groups. After the animals reached a desired weight, they were subjected to a 2 h middle cerebral artery occlusion (MCAO) procedure followed by 7 days of reperfusion. The hUCBSCs were obtained, cultured, and intravenously injected (0.25 × 10(6) cells or 1 × 10(6) cells) via the tail vein to separate groups of animals 24 h post-MCAO procedure. We performed various techniques including PCR microarray, hematoxylin and eosin, and TUNEL staining in addition to immunoblot and immunofluorescence analysis in order to investigate the effect of our treatment on regulation of apoptosis after focal cerebral ischemia. Most of the apoptotic pathway molecules which were upregulated after focal cerebral ischemia were downregulated after hUCBSCs treatment. Further, the staining techniques revealed a prominent reduction in brain damage and the extent of apoptosis at even the lowest dose of hUCBSCs tested in the present study. In conclusion, our treatment with hUCBSCs after cerebral ischemia in the rodent reduces brain damage by inhibiting apoptosis and downregulating the apoptotic pathway molecules.



http://www.ncbi.nlm.nih.gov/pubmed/24879430#



Join InvestorsHub

Join the InvestorsHub Community

Register for free to join our community of investors and share your ideas. You will also get access to streaming quotes, interactive charts, trades, portfolio, live options flow and more tools.