InvestorsHub Logo

johnnyfiber

11/24/07 7:18 PM

#73096 RE: johnnyfiber #73095

Nature Genetics
Published online: 21 October 2007 | doi:10.1038/ng.2007.13


Genetic determinants of hair, eye and skin pigmentation in Europeans
Patrick Sulem1, Daniel F Gudbjartsson1, Simon N Stacey1, Agnar Helgason1, Thorunn Rafnar1, Kristinn P Magnusson1, Andrei Manolescu1, Ari Karason1, Arnar Palsson1, Gudmar Thorleifsson1, Margret Jakobsdottir1, Stacy Steinberg1, Snæbjörn Pálsson1, Fridbert Jonasson2, Bardur Sigurgeirsson3, Kristin Thorisdottir3,4, Rafn Ragnarsson4, Kristrun R Benediktsdottir5, Katja K Aben6, Lambertus A Kiemeney7,8, Jon H Olafsson3, Jeffrey Gulcher1, Augie Kong1, Unnur Thorsteinsdottir1 & Kari Stefansson1


--------------------------------------------------------------------------------

AbstractHair, skin and eye colors are highly heritable and visible traits in humans. We carried out a genome-wide association scan for variants associated with hair and eye pigmentation, skin sensitivity to sun and freckling among 2,986 Icelanders. We then tested the most closely associated SNPs from six regions—four not previously implicated in the normal variation of human pigmentation—and replicated their association in a second sample of 2,718 Icelanders and a sample of 1,214 Dutch. The SNPs from all six regions met the criteria for genome-wide significance. A variant in SLC24A4 is associated with eye and hair color, a variant near KITLG is associated with hair color, two coding variants in TYR are associated with eye color and freckles, and a variant on 6p25.3 is associated with freckles. The fifth region provided refinements to a previously reported association in OCA2, and the sixth encompasses previously described variants in MC1R.

References
Relethford, J.H. Hemispheric difference in human skin color. Am. J. Phys. Anthropol. 104, 449–457 (1997). | Article | PubMed | ISI | ChemPort |
Sturm, R.A. A golden age of human pigmentation genetics. Trends Genet. 22, 464–468 (2006). | Article | PubMed | ISI | ChemPort |
Jablonski, N.G. & Chaplin, G. The evolution of human skin coloration. J. Hum. Evol. 39, 57–106 (2000). | Article | PubMed | ISI | ChemPort |
Sturm, R.A., Box, N.F. & Ramsay, M. Human pigmentation genetics: the difference is only skin deep. Bioessays 20, 712–721 (1998). | Article | PubMed | ISI | ChemPort |
Galton, F. Family-likeness in eye-colour. Nature 34, 137 (1886).
Posthuma, D. et al. Replicated linkage for eye color on 15q using comparative ratings of sibling pairs. Behav. Genet. 36, 12–17 (2006). | Article | PubMed | ISI |
Barsh, G.S. What controls variation in human skin color? PLoS Biol. 1, E27 (2003). | Article | PubMed |
Brauer, G. & Chopra, V.P. [Estimation of the heritability of hair and eye color.] Anthropol. Anz. 36, 109–120 (1978). | PubMed | ChemPort |
Bataille, V., Snieder, H., MacGregor, A.J., Sasieni, P. & Spector, T.D. Genetics of risk factors for melanoma: an adult twin study of nevi and freckles. J. Natl. Cancer Inst. 92, 457–463 (2000). | Article | PubMed | ChemPort |
Eiberg, H. & Mohr, J. Major locus for red hair color linked to MNS blood groups on chromosome 4. Clin. Genet. 32, 125–128 (1987). | PubMed | ISI | ChemPort |
Hoekstra, H.E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006). | Article | PubMed | ISI | ChemPort |
Valverde, P., Healy, E., Jackson, I., Rees, J.L. & Thody, A.J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11, 328–330 (1995). | Article | PubMed | ISI | ChemPort |
Rees, J.L. The genetics of sun sensitivity in humans. Am. J. Hum. Genet. 75, 739–751 (2004). | Article | PubMed | ISI | ChemPort |
Makova, K. & Norton, H. Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides 26, 1901–1908 (2005). | Article | PubMed | ISI | ChemPort |
Eiberg, H. & Mohr, J. Assignment of genes coding for brown eye colour (BEY2) and brown hair colour (HCL3) on chromosome 15q. Eur. J. Hum. Genet. 4, 237–241 (1996). | PubMed | ISI | ChemPort |
Sturm, R.A. & Frudakis, T.N. Eye colour: portals into pigmentation genes and ancestry. Trends Genet. 20, 327–332 (2004). | Article | PubMed | ISI | ChemPort |
Frudakis, T. et al. Sequences associated with human iris pigmentation. Genetics 165, 2071–2083 (2003).
| PubMed | ISI | ChemPort |
Duffy, D.L. et al. A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am. J. Hum. Genet. 80, 241–252 (2007). | Article | PubMed | ISI | ChemPort |
Lamason, R.L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005). | Article | PubMed | ISI | ChemPort |
Norton, H.L. et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24, 710–722 (2007). | Article | PubMed | ISI | ChemPort |
Bonilla, C. et al. The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Hum. Genet. 116, 402–406 (2005). | Article | PubMed | ISI | ChemPort |
Shriver, M.D. et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum. Genet. 112, 387–399 (2003). | PubMed | ISI |
Lao, O., de Gruijter, J.M., van Duijn, K., Navarro, A. & Kayser, M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007). | Article | PubMed | ISI | ChemPort |
McEvoy, B., Beleza, S. & Shriver, M.D. The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model. Hum. Mol. Genet. 15, R176–R181 (2006). | Article | PubMed | ISI | ChemPort |
Myles, S., Somel, M., Tang, K., Kelso, J. & Stoneking, M. Identifying genes underlying skin pigmentation differences among human populations. Hum. Genet. 120, 613–621 (2007). | Article | PubMed | ISI | ChemPort |
Williamson, S.H. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007). | Article | PubMed | ChemPort |
Lin, J.Y. & Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007). | Article | PubMed | ISI | ChemPort |
International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005). | Article | PubMed | ISI | ChemPort |
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007). | Article | PubMed | ISI | ChemPort |
Wehrle-Haller, B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 16, 287–296 (2003). | Article | PubMed | ISI | ChemPort |
Seitz, J.J., Schmutz, S.M., Thue, T.D. & Buchanan, F.C. A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mamm. Genome 10, 710–712 (1999). | Article | PubMed | ISI | ChemPort |
Izagirre, N., Garcia, I., Junquera, C., de la Rua, C. & Alonso, S. A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol. Biol. Evol. 23, 1697–1706 (2006). | Article | PubMed | ISI | ChemPort |
Harding, R.M. et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66, 1351–1361 (2000). | Article | PubMed | ISI | ChemPort |
Gulcher, J.R., Kristjansson, K., Gudbjartsson, H. & Stefansson, K. Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000). | Article | PubMed | ISI | ChemPort |
Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988). | Article | PubMed | ISI | ChemPort |
Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007). | Article | PubMed | ISI | ChemPort |
Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003). | Article | PubMed | ISI |
Falk, C.T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51, 227–233 (1987). | Article | PubMed | ISI | ChemPort |
Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959). | PubMed | ChemPort |
Grant, S.F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006). | Article | PubMed | ISI | ChemPort |
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999). | Article | PubMed | ISI | ChemPort |
Devlin, B., Bacanu, S.-A. & Roeder, K. Genomic control to the extreme. Nat. Genet. 36, 1129–1130 (2004). | Article | PubMed | ISI | ChemPort |
Kutyavin, I.V. et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006). | Article | PubMed | ChemPort |
Seldin, M.F. et al. European population substructure: clustering of northern and southern populations. PLoS Genet. 2, e143 (2006). | Article | PubMed | ChemPort |
Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004). | Article | PubMed | ISI | ChemPort |
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). | Article | PubMed | ISI | ChemPort |
Beaumont, M.A. & Nichols, R.A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996). | Article | ISI |
Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002). | Article | PubMed | ISI | ChemPort |
Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218–225 (2007). | Article | PubMed | ISI | ChemPort |
Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006). | Article | PubMed | ChemPort |
deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland.
Department of Ophthalmology, Landspitali–University Hospital, Reykjavik, Iceland.
Department of Dermatology, Landspitali–University Hospital, Reykjavik, Iceland.
Department of Plastic Surgery, Landspitali–University Hospital, Reykjavik, Iceland.
Department of Anatomopathology, Landspitali–University Hospital, Reykjavik, Iceland.
Comprehensive Cancer Center East and Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
Department of Epidemiology and Biostatistics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
Department of Urology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

http://npg.nature.com/ng/journal/vaop/ncurrent/full/ng.2007.13.html#B19

johnnyfiber

11/24/07 7:22 PM

#73097 RE: johnnyfiber #73095

A Genomewide Single-NucleotidePolymorphism Panel for Mexican American Admixture Mapping
Author(s) Chao Tian, David A. Hinds, Russell Shigeta, Sharon G. Adler, Annette Lee, Madeleine V. Pahl, Gabriel Silva, John W. Belmont, Robert L. Hanson, William C. Knowler, Peter K. Gregersen, Dennis G. Ballinger, and Michael F. Seldin
Identifiers The American Journal of Human Genetics, volume 80 (2007), page 000
DOI: 10.1086/513522

Availability This site: PS | HTML | PDF (316.2k)
Copyright © 2007, The American Society of Human Genetics.
Abstract For admixture mapping studies in Mexican Americans (MAM), we define a genomewide single-nucleotidepolymorphism (SNP) panel that can distinguish between chromosomal segments of Amerindian (AMI) or European (EUR) ancestry. These studies used genotypes for >400,000 SNPs, defined in EUR and both Pima and Mayan AMI, to define a set of ancestry-informative markers (AIMs). The use of two AMI populations was necessary to remove a subset of SNPs that distinguished genotypes of only one AMI subgroup from EUR genotypes. The AIMs set contained 8,144 SNPs separated by a minimum of 50 kb with only three intermarker intervals >1 Mb and had EUR/AMI FST values >0.30 (mean FST=0.48) and Mayan/Pima FST values <0.05 (mean FST<0.01). Analysis of a subset of these SNP AIMs suggested that this panel may also distinguish ancestry between EUR and other disparate AMI groups, including Quechuan from South America. We show, using realistic simulation parameters that are based on our analyses of MAM genotyping results, that this panel of SNP AIMs provides good power for detecting disease-associated chromosomal segments for genes with modest ethnicity risk ratios. A reduced set of 5,287 SNP AIMs captured almost the same admixture mapping information, but smaller SNP sets showed substantial drop-off in admixture mapping information and power. The results will enable studies of type 2 diabetes, rheumatoid arthritis, and other diseases among which epidemiological studies suggest differences in the distribution of ancestry-associated susceptibility.

http://www.journals.uchicago.edu/cgi-bin/resolve?id=doi:10.1086/513522&erFrom=-6401546418201314829Guest