InvestorsHub Logo
Followers 29
Posts 2446
Boards Moderated 0
Alias Born 11/22/2010

Re: None

Wednesday, 11/01/2017 12:30:13 PM

Wednesday, November 01, 2017 12:30:13 PM

Post# of 839
MSU T2 Camelina Data released

https://www.ncbi.nlm.nih.gov/pubmed/28975735


Engineering Camelina sativa (L.) Crantz for Enhanced Oil and Seed Yields by Combining Diacylglycerol Acyltransferase1 and Glycerol-3-Phosphate Dehydrogenase Expression.

Abstract
Plant seed oils based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproducts applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild type plants. Further, DGAT1 and GDP1 co-expressing lines showed significantly higher seed and oil yields on a dry-weight basis than the wild type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1 and GPD1 co-expressing lines was almost two-folds higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. This article is protected by copyright. All rights reserved.

Volume:
Day Range:
Bid:
Ask:
Last Trade Time:
Total Trades:
  • 1D
  • 1M
  • 3M
  • 6M
  • 1Y
  • 5Y
Recent YTEN News