InvestorsHub Logo
Followers 2
Posts 375
Boards Moderated 0
Alias Born 10/01/2020

Re: None

Thursday, 02/18/2021 8:31:28 AM

Thursday, February 18, 2021 8:31:28 AM

Post# of 24332
is VNTH in any way connected to this study, or the researchers involved?

Toward a disease-sniffing device that rivals a dog's nose

https://phys.org/news/2021-02-disease-sniffing-device-rivals-dog-nose.html

Now, a team of researchers at MIT and other institutions has come up with a system that can detect the chemical and microbial content of an air sample with even greater sensitivity than a dog's nose. They coupled this to a machine-learning process that can identify the distinctive characteristics of the disease-bearing samples.

The findings, which the researchers say could someday lead to an automated odor-detection system small enough to be incorporated into a cellphone, are being published today in the journal PLoS ONE, in a paper by Clare Guest of Medical Detection Dogs in the U.K., Research Scientist Andreas Mershin of MIT, and 18 others at Johns Hopkins University, the Prostate Cancer Foundation, and several other universities and organizations.
..........

Mershin and the team over the last few years have developed, and continued to improve on, a miniaturized detector system that incorporates mammalian olfactory receptors stabilized to act as sensors, whose data streams can be handled in real-time by a typical smartphone's capabilities. He envisions a day when every phone will have a scent detector built in, just as cameras are now ubiquitous in phones. Such detectors, equipped with advanced algorithms developed through machine learning, could potentially pick up early signs of disease far sooner than typical screening regimes, he says—and could even warn of smoke or a gas leak as well.

In the latest tests, the team tested 50 samples of urine from confirmed cases of prostate cancer and controls known to be free of the disease, using both dogs trained and handled by Medical Detection Dogs in the U.K. and the miniaturized detection system. They then applied a machine-learning program to tease out any similarities and differences between the samples that could help the sensor-based system to identify the disease. In testing the same samples, the artificial system was able to match the success rates of the dogs, with both methods scoring more than 70 percent.